physxCAPI/physxCDLL/include/PxMPMMaterial.h

417 lines
12 KiB
C
Raw Normal View History

2023-08-11 10:55:58 +08:00
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Copyright (c) 2008-2023 NVIDIA Corporation. All rights reserved.
// Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved.
// Copyright (c) 2001-2004 NovodeX AG. All rights reserved.
#ifndef PX_MPM_MATERIAL_H
#define PX_MPM_MATERIAL_H
/** \addtogroup physics
@{
*/
#include "PxParticleMaterial.h"
#if !PX_DOXYGEN
namespace physx
{
#endif
/**
\brief MPM material models
*/
struct PxMPMMaterialModel
{
enum Enum
{
eATTACHED = 1 << 0, //!< Marker to indicate that all particles with an attached material should be treated as attached to whatever object they are located in
eNEO_HOOKEAN = 1 << 1, //!< A Neo-Hookean material model will be used
eELASTIC = 1 << 2, //!< A corotaional cauchy strain based material model will be used
eSNOW = 1 << 3, //!< A corotaional cauchy strain based material model with strain limiting and hardening will be used
eSAND = 1 << 4, //!< A Ducker-Prager elastoplasticity material model will be used
eVON_MISES = 1 << 5 //!< A von Mises material model will be used
};
};
/**
\brief MPM surface types that influence interaction between particles and obstacles
*/
struct PxMPMSurfaceType
{
enum Enum
{
eDEFAULT = 0, //!< Normal surface with friction in tangential direction
eSTICKY = 1 << 0, //!< Surface will always have friction in the tangential and the normal direction
eSLIPPERY = 1 << 1 //!< Surface will not cause any friction
};
};
/**
\brief Optional MPM modes that improve the quality of fracture and/or cutting
*/
struct PxMPMCuttingFlag
{
enum Enum
{
eNONE = 0, //!< No special processing to support cutting will be performed
eSUPPORT_THIN_BLADES = 1 << 0, //!< Special collision detection will be performed to improve support for blade like objects that are thinner than the mpm grid spacing
eENABLE_DAMAGE_TRACKING = 1 << 1 //!< A damage value will get updated on every particle to simulate material weakening to get more realistic crack propagation
};
};
typedef PxFlags<PxMPMCuttingFlag::Enum,PxU16> PxMPMCuttingFlags;
PX_FLAGS_OPERATORS(PxMPMCuttingFlag::Enum,PxU16)
class PxScene;
/**
\brief Material class to represent a set of MPM particle material properties.
@see PxPhysics.createMPMMaterial
*/
class PxMPMMaterial : public PxParticleMaterial
{
public:
/**
\brief Sets stretch and shear damping which dampens stretch and shear motion of MPM bodies. The effect is comparable to viscosity for fluids.
\param[in] stretchAndShearDamping The stretch and shear damping
@see getStretchAndShearDamping()
*/
virtual void setStretchAndShearDamping(PxReal stretchAndShearDamping) = 0;
/**
\brief Retrieves the stretch and shear damping.
\return The stretch and shear damping
@see setStretchAndShearDamping()
*/
virtual PxReal getStretchAndShearDamping() const = 0;
/**
\brief Sets the rotational damping which dampens rotations of mpm bodies
\param[in] rotationalDamping The rotational damping
@see getRotationalDamping()
*/
virtual void setRotationalDamping(PxReal rotationalDamping) = 0;
/**
\brief Retrieves the rotational damping.
\return The rotational damping
@see setRotationalDamping()
*/
virtual PxReal getRotationalDamping() const = 0;
/**
\brief Sets density which influences the body's weight
\param[in] density The material's density
@see getDensity()
*/
virtual void setDensity(PxReal density) = 0;
/**
\brief Retrieves the density value.
\return The density
@see setDensity()
*/
virtual PxReal getDensity() const = 0;
/**
\brief Sets the material model which influences interaction between MPM particles
\param[in] materialModel The material model
@see getMaterialModel()
*/
virtual void setMaterialModel(PxMPMMaterialModel::Enum materialModel) = 0;
/**
\brief Retrieves the material model.
\return The material model
@see setMaterialModel()
*/
virtual PxMPMMaterialModel::Enum getMaterialModel() const = 0;
/**
\brief Sets the cutting flags which can enable damage tracking or thin blade support
\param[in] cuttingFlags The cutting flags
@see getCuttingFlags()
*/
virtual void setCuttingFlags(PxMPMCuttingFlags cuttingFlags) = 0;
/**
\brief Retrieves the cutting flags.
\return The cutting flags
@see setCuttingFlags()
*/
virtual PxMPMCuttingFlags getCuttingFlags() const = 0;
/**
\brief Sets the sand friction angle, only applied if the material model is set to sand
\param[in] sandFrictionAngle The sand friction angle
@see getSandFrictionAngle()
*/
virtual void setSandFrictionAngle(PxReal sandFrictionAngle) = 0;
/**
\brief Retrieves the sand friction angle.
\return The sand friction angle
@see setSandFrictionAngle()
*/
virtual PxReal getSandFrictionAngle() const = 0;
/**
\brief Sets the yield stress, only applied if the material model is set to Von Mises
\param[in] yieldStress The yield stress
@see getYieldStress()
*/
virtual void setYieldStress(PxReal yieldStress) = 0;
/**
\brief Retrieves the yield stress.
\return The yield stress
@see setYieldStress()
*/
virtual PxReal getYieldStress() const = 0;
/**
\brief Set material to plastic
\param[in] isPlastic True if plastic
@see getIsPlastic()
*/
virtual void setIsPlastic(bool isPlastic) = 0;
/**
\brief Returns true if material is plastic
\return True if plastic
@see setIsPlastic()
*/
virtual bool getIsPlastic() const = 0;
/**
\brief Sets Young's modulus which defines the body's stiffness
\param[in] young Young's modulus. <b>Range:</b> [0, PX_MAX_F32)
@see getYoungsModulus()
*/
virtual void setYoungsModulus(PxReal young) = 0;
/**
\brief Retrieves the Young's modulus value.
\return The Young's modulus value.
@see setYoungsModulus()
*/
virtual PxReal getYoungsModulus() const = 0;
/**
\brief Sets Poisson's ratio defines the body's volume preservation. Completely incompressible materials have a Poisson ratio of 0.5 which will lead to numerical problems.
\param[in] poisson Poisson's ratio. <b>Range:</b> [0, 0.5)
@see getPoissons()
*/
virtual void setPoissons(PxReal poisson) = 0;
/**
\brief Retrieves the Poisson's ratio.
\return The Poisson's ratio.
@see setPoissons()
*/
virtual PxReal getPoissons() const = 0;
/**
\brief Sets material hardening coefficient
Tendency to get more rigid under compression. <b>Range:</b> [0, PX_MAX_F32)
\param[in] hardening Material hardening coefficient.
@see getHardening
*/
virtual void setHardening(PxReal hardening) = 0;
/**
\brief Retrieves the hardening coefficient.
\return The hardening coefficient.
@see setHardening()
*/
virtual PxReal getHardening() const = 0;
/**
\brief Sets material critical compression coefficient
Compression clamping threshold (higher means more compression is allowed before yield). <b>Range:</b> [0, 1)
\param[in] criticalCompression Material critical compression coefficient.
@see getCriticalCompression
*/
virtual void setCriticalCompression(PxReal criticalCompression) = 0;
/**
\brief Retrieves the critical compression coefficient.
\return The criticalCompression coefficient.
@see setCriticalCompression()
*/
virtual PxReal getCriticalCompression() const = 0;
/**
\brief Sets material critical stretch coefficient
Stretch clamping threshold (higher means more stretching is allowed before yield). <b>Range:</b> [0, 1]
\param[in] criticalStretch Material critical stretch coefficient.
@see getCriticalStretch
*/
virtual void setCriticalStretch(PxReal criticalStretch) = 0;
/**
\brief Retrieves the critical stretch coefficient.
\return The criticalStretch coefficient.
@see setCriticalStretch()
*/
virtual PxReal getCriticalStretch() const = 0;
/**
\brief Sets material tensile damage sensitivity coefficient
Sensitivity to tensile loads. The higher the sensitivity, the quicker damage will occur under tensile loads. <b>Range:</b> [0, PX_MAX_U32)
\param[in] tensileDamageSensitivity Material tensile damage sensitivity coefficient.
@see getTensileDamageSensitivity
*/
virtual void setTensileDamageSensitivity(PxReal tensileDamageSensitivity) = 0;
/**
\brief Retrieves the tensile damage sensitivity coefficient.
\return The tensileDamageSensitivity coefficient.
@see setTensileDamageSensitivity()
*/
virtual PxReal getTensileDamageSensitivity() const = 0;
/**
\brief Sets material compressive damage sensitivity coefficient
Sensitivity to compressive loads. The higher the sensitivity, the quicker damage will occur under compressive loads <b>Range:</b> [0, PX_MAX_U32)
\param[in] compressiveDamageSensitivity Material compressive damage sensitivity coefficient.
@see getCompressiveDamageSensitivity
*/
virtual void setCompressiveDamageSensitivity(PxReal compressiveDamageSensitivity) = 0;
/**
\brief Retrieves the compressive damage sensitivity coefficient.
\return The compressiveDamageSensitivity coefficient.
@see setCompressiveDamageSensitivity()
*/
virtual PxReal getCompressiveDamageSensitivity() const = 0;
/**
\brief Sets material attractive force residual coefficient
Relative amount of attractive force a fully damaged particle can exert on other particles compared to an undamaged one. <b>Range:</b> [0, 1]
\param[in] attractiveForceResidual Material attractive force residual coefficient.
@see getAttractiveForceResidual
*/
virtual void setAttractiveForceResidual(PxReal attractiveForceResidual) = 0;
/**
\brief Retrieves the attractive force residual coefficient.
\return The attractiveForceResidual coefficient.
@see setAttractiveForceResidual()
*/
virtual PxReal getAttractiveForceResidual() const = 0;
virtual const char* getConcreteTypeName() const { return "PxMPMMaterial"; }
protected:
PX_INLINE PxMPMMaterial(PxType concreteType, PxBaseFlags baseFlags) : PxParticleMaterial(concreteType, baseFlags) {}
PX_INLINE PxMPMMaterial(PxBaseFlags baseFlags) : PxParticleMaterial(baseFlags) {}
virtual ~PxMPMMaterial() {}
virtual bool isKindOf(const char* name) const { return !::strcmp("PxMPMMaterial", name) || PxParticleMaterial::isKindOf(name); }
};
#if !PX_DOXYGEN
} // namespace physx
#endif
/** @} */
#endif