392 lines
12 KiB
C
392 lines
12 KiB
C
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions
|
||
|
// are met:
|
||
|
// * Redistributions of source code must retain the above copyright
|
||
|
// notice, this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above copyright
|
||
|
// notice, this list of conditions and the following disclaimer in the
|
||
|
// documentation and/or other materials provided with the distribution.
|
||
|
// * Neither the name of NVIDIA CORPORATION nor the names of its
|
||
|
// contributors may be used to endorse or promote products derived
|
||
|
// from this software without specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY
|
||
|
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||
|
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||
|
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
//
|
||
|
// Copyright (c) 2008-2023 NVIDIA Corporation. All rights reserved.
|
||
|
// Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved.
|
||
|
// Copyright (c) 2001-2004 NovodeX AG. All rights reserved.
|
||
|
|
||
|
#ifndef PX_MAT44_H
|
||
|
#define PX_MAT44_H
|
||
|
/** \addtogroup foundation
|
||
|
@{
|
||
|
*/
|
||
|
|
||
|
#include "foundation/PxQuat.h"
|
||
|
#include "foundation/PxVec4.h"
|
||
|
#include "foundation/PxMat33.h"
|
||
|
#include "foundation/PxTransform.h"
|
||
|
|
||
|
#if !PX_DOXYGEN
|
||
|
namespace physx
|
||
|
{
|
||
|
#endif
|
||
|
|
||
|
/*!
|
||
|
\brief 4x4 matrix class
|
||
|
|
||
|
This class is layout-compatible with D3D and OpenGL matrices. More notes on layout are given in the PxMat33
|
||
|
|
||
|
@see PxMat33 PxTransform
|
||
|
*/
|
||
|
|
||
|
template<class Type>
|
||
|
class PxMat44T
|
||
|
{
|
||
|
public:
|
||
|
//! Default constructor
|
||
|
PX_CUDA_CALLABLE PX_INLINE PxMat44T()
|
||
|
{
|
||
|
}
|
||
|
|
||
|
//! identity constructor
|
||
|
PX_CUDA_CALLABLE PX_INLINE PxMat44T(PxIDENTITY) :
|
||
|
column0(Type(1.0), Type(0.0), Type(0.0), Type(0.0)),
|
||
|
column1(Type(0.0), Type(1.0), Type(0.0), Type(0.0)),
|
||
|
column2(Type(0.0), Type(0.0), Type(1.0), Type(0.0)),
|
||
|
column3(Type(0.0), Type(0.0), Type(0.0), Type(1.0))
|
||
|
{
|
||
|
}
|
||
|
|
||
|
//! zero constructor
|
||
|
PX_CUDA_CALLABLE PX_INLINE PxMat44T(PxZERO) : column0(PxZero), column1(PxZero), column2(PxZero), column3(PxZero)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
//! Construct from four 4-vectors
|
||
|
PX_CUDA_CALLABLE PxMat44T(const PxVec4T<Type>& col0, const PxVec4T<Type>& col1, const PxVec4T<Type>& col2, const PxVec4T<Type>& col3) :
|
||
|
column0(col0),
|
||
|
column1(col1),
|
||
|
column2(col2),
|
||
|
column3(col3)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
//! constructor that generates a multiple of the identity matrix
|
||
|
explicit PX_CUDA_CALLABLE PX_INLINE PxMat44T(Type r) :
|
||
|
column0(r, Type(0.0), Type(0.0), Type(0.0)),
|
||
|
column1(Type(0.0), r, Type(0.0), Type(0.0)),
|
||
|
column2(Type(0.0), Type(0.0), r, Type(0.0)),
|
||
|
column3(Type(0.0), Type(0.0), Type(0.0), r)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
//! Construct from three base vectors and a translation
|
||
|
PX_CUDA_CALLABLE PxMat44T(const PxVec3T<Type>& col0, const PxVec3T<Type>& col1, const PxVec3T<Type>& col2, const PxVec3T<Type>& col3) :
|
||
|
column0(col0, Type(0.0)),
|
||
|
column1(col1, Type(0.0)),
|
||
|
column2(col2, Type(0.0)),
|
||
|
column3(col3, Type(1.0))
|
||
|
{
|
||
|
}
|
||
|
|
||
|
//! Construct from Type[16]
|
||
|
explicit PX_CUDA_CALLABLE PX_INLINE PxMat44T(Type values[]) :
|
||
|
column0(values[0], values[1], values[2], values[3]),
|
||
|
column1(values[4], values[5], values[6], values[7]),
|
||
|
column2(values[8], values[9], values[10], values[11]),
|
||
|
column3(values[12], values[13], values[14], values[15])
|
||
|
{
|
||
|
}
|
||
|
|
||
|
//! Construct from a quaternion
|
||
|
explicit PX_CUDA_CALLABLE PX_INLINE PxMat44T(const PxQuatT<Type>& q)
|
||
|
{
|
||
|
// PT: TODO: PX-566
|
||
|
const Type x = q.x;
|
||
|
const Type y = q.y;
|
||
|
const Type z = q.z;
|
||
|
const Type w = q.w;
|
||
|
|
||
|
const Type x2 = x + x;
|
||
|
const Type y2 = y + y;
|
||
|
const Type z2 = z + z;
|
||
|
|
||
|
const Type xx = x2 * x;
|
||
|
const Type yy = y2 * y;
|
||
|
const Type zz = z2 * z;
|
||
|
|
||
|
const Type xy = x2 * y;
|
||
|
const Type xz = x2 * z;
|
||
|
const Type xw = x2 * w;
|
||
|
|
||
|
const Type yz = y2 * z;
|
||
|
const Type yw = y2 * w;
|
||
|
const Type zw = z2 * w;
|
||
|
|
||
|
column0 = PxVec4T<Type>(Type(1.0) - yy - zz, xy + zw, xz - yw, Type(0.0));
|
||
|
column1 = PxVec4T<Type>(xy - zw, Type(1.0) - xx - zz, yz + xw, Type(0.0));
|
||
|
column2 = PxVec4T<Type>(xz + yw, yz - xw, Type(1.0) - xx - yy, Type(0.0));
|
||
|
column3 = PxVec4T<Type>(Type(0.0), Type(0.0), Type(0.0), Type(1.0));
|
||
|
}
|
||
|
|
||
|
//! Construct from a diagonal vector
|
||
|
explicit PX_CUDA_CALLABLE PX_INLINE PxMat44T(const PxVec4T<Type>& diagonal) :
|
||
|
column0(diagonal.x, Type(0.0), Type(0.0), Type(0.0)),
|
||
|
column1(Type(0.0), diagonal.y, Type(0.0), Type(0.0)),
|
||
|
column2(Type(0.0), Type(0.0), diagonal.z, Type(0.0)),
|
||
|
column3(Type(0.0), Type(0.0), Type(0.0), diagonal.w)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
//! Construct from Mat33 and a translation
|
||
|
PX_CUDA_CALLABLE PxMat44T(const PxMat33T<Type>& axes, const PxVec3T<Type>& position) :
|
||
|
column0(axes.column0, Type(0.0)),
|
||
|
column1(axes.column1, Type(0.0)),
|
||
|
column2(axes.column2, Type(0.0)),
|
||
|
column3(position, Type(1.0))
|
||
|
{
|
||
|
}
|
||
|
|
||
|
PX_CUDA_CALLABLE PxMat44T(const PxTransform& t)
|
||
|
{
|
||
|
*this = PxMat44T(PxMat33T<Type>(t.q), t.p);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
\brief returns true if the two matrices are exactly equal
|
||
|
*/
|
||
|
PX_CUDA_CALLABLE PX_INLINE bool operator==(const PxMat44T& m) const
|
||
|
{
|
||
|
return column0 == m.column0 && column1 == m.column1 && column2 == m.column2 && column3 == m.column3;
|
||
|
}
|
||
|
|
||
|
//! Copy constructor
|
||
|
PX_CUDA_CALLABLE PX_INLINE PxMat44T(const PxMat44T& other) :
|
||
|
column0(other.column0),
|
||
|
column1(other.column1),
|
||
|
column2(other.column2),
|
||
|
column3(other.column3)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
//! Assignment operator
|
||
|
PX_CUDA_CALLABLE PX_INLINE PxMat44T& operator=(const PxMat44T& other)
|
||
|
{
|
||
|
column0 = other.column0;
|
||
|
column1 = other.column1;
|
||
|
column2 = other.column2;
|
||
|
column3 = other.column3;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
//! Get transposed matrix
|
||
|
PX_CUDA_CALLABLE PX_INLINE const PxMat44T getTranspose() const
|
||
|
{
|
||
|
return PxMat44T(
|
||
|
PxVec4T<Type>(column0.x, column1.x, column2.x, column3.x), PxVec4T<Type>(column0.y, column1.y, column2.y, column3.y),
|
||
|
PxVec4T<Type>(column0.z, column1.z, column2.z, column3.z), PxVec4T<Type>(column0.w, column1.w, column2.w, column3.w));
|
||
|
}
|
||
|
|
||
|
//! Unary minus
|
||
|
PX_CUDA_CALLABLE PX_INLINE const PxMat44T operator-() const
|
||
|
{
|
||
|
return PxMat44T(-column0, -column1, -column2, -column3);
|
||
|
}
|
||
|
|
||
|
//! Add
|
||
|
PX_CUDA_CALLABLE PX_INLINE const PxMat44T operator+(const PxMat44T& other) const
|
||
|
{
|
||
|
return PxMat44T(column0 + other.column0, column1 + other.column1, column2 + other.column2, column3 + other.column3);
|
||
|
}
|
||
|
|
||
|
//! Subtract
|
||
|
PX_CUDA_CALLABLE PX_INLINE const PxMat44T operator-(const PxMat44T& other) const
|
||
|
{
|
||
|
return PxMat44T(column0 - other.column0, column1 - other.column1, column2 - other.column2, column3 - other.column3);
|
||
|
}
|
||
|
|
||
|
//! Scalar multiplication
|
||
|
PX_CUDA_CALLABLE PX_INLINE const PxMat44T operator*(Type scalar) const
|
||
|
{
|
||
|
return PxMat44T(column0 * scalar, column1 * scalar, column2 * scalar, column3 * scalar);
|
||
|
}
|
||
|
|
||
|
template<class Type2>
|
||
|
friend PxMat44T<Type2> operator*(Type2, const PxMat44T<Type2>&);
|
||
|
|
||
|
//! Matrix multiplication
|
||
|
PX_CUDA_CALLABLE PX_INLINE const PxMat44T operator*(const PxMat44T& other) const
|
||
|
{
|
||
|
// Rows from this <dot> columns from other
|
||
|
// column0 = transform(other.column0) etc
|
||
|
return PxMat44T(transform(other.column0), transform(other.column1), transform(other.column2), transform(other.column3));
|
||
|
}
|
||
|
|
||
|
// a <op>= b operators
|
||
|
|
||
|
//! Equals-add
|
||
|
PX_CUDA_CALLABLE PX_INLINE PxMat44T& operator+=(const PxMat44T& other)
|
||
|
{
|
||
|
column0 += other.column0;
|
||
|
column1 += other.column1;
|
||
|
column2 += other.column2;
|
||
|
column3 += other.column3;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
//! Equals-sub
|
||
|
PX_CUDA_CALLABLE PX_INLINE PxMat44T& operator-=(const PxMat44T& other)
|
||
|
{
|
||
|
column0 -= other.column0;
|
||
|
column1 -= other.column1;
|
||
|
column2 -= other.column2;
|
||
|
column3 -= other.column3;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
//! Equals scalar multiplication
|
||
|
PX_CUDA_CALLABLE PX_INLINE PxMat44T& operator*=(Type scalar)
|
||
|
{
|
||
|
column0 *= scalar;
|
||
|
column1 *= scalar;
|
||
|
column2 *= scalar;
|
||
|
column3 *= scalar;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
//! Equals matrix multiplication
|
||
|
PX_CUDA_CALLABLE PX_INLINE PxMat44T& operator*=(const PxMat44T& other)
|
||
|
{
|
||
|
*this = *this * other;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
//! Element access, mathematical way!
|
||
|
PX_CUDA_CALLABLE PX_FORCE_INLINE Type operator()(PxU32 row, PxU32 col) const
|
||
|
{
|
||
|
return (*this)[col][row];
|
||
|
}
|
||
|
|
||
|
//! Element access, mathematical way!
|
||
|
PX_CUDA_CALLABLE PX_FORCE_INLINE Type& operator()(PxU32 row, PxU32 col)
|
||
|
{
|
||
|
return (*this)[col][row];
|
||
|
}
|
||
|
|
||
|
//! Transform vector by matrix, equal to v' = M*v
|
||
|
PX_CUDA_CALLABLE PX_INLINE const PxVec4T<Type> transform(const PxVec4T<Type>& other) const
|
||
|
{
|
||
|
return column0 * other.x + column1 * other.y + column2 * other.z + column3 * other.w;
|
||
|
}
|
||
|
|
||
|
//! Transform vector by matrix, equal to v' = M*v
|
||
|
PX_CUDA_CALLABLE PX_INLINE const PxVec3T<Type> transform(const PxVec3T<Type>& other) const
|
||
|
{
|
||
|
return transform(PxVec4T<Type>(other, Type(1.0))).getXYZ();
|
||
|
}
|
||
|
|
||
|
//! Rotate vector by matrix, equal to v' = M*v
|
||
|
PX_CUDA_CALLABLE PX_INLINE const PxVec4T<Type> rotate(const PxVec4T<Type>& other) const
|
||
|
{
|
||
|
return column0 * other.x + column1 * other.y + column2 * other.z; // + column3*0;
|
||
|
}
|
||
|
|
||
|
//! Rotate vector by matrix, equal to v' = M*v
|
||
|
PX_CUDA_CALLABLE PX_INLINE const PxVec3T<Type> rotate(const PxVec3T<Type>& other) const
|
||
|
{
|
||
|
return rotate(PxVec4T<Type>(other, Type(1.0))).getXYZ();
|
||
|
}
|
||
|
|
||
|
PX_CUDA_CALLABLE PX_INLINE const PxVec3T<Type> getBasis(PxU32 num) const
|
||
|
{
|
||
|
PX_ASSERT(num < 3);
|
||
|
return (&column0)[num].getXYZ();
|
||
|
}
|
||
|
|
||
|
PX_CUDA_CALLABLE PX_INLINE const PxVec3T<Type> getPosition() const
|
||
|
{
|
||
|
return column3.getXYZ();
|
||
|
}
|
||
|
|
||
|
PX_CUDA_CALLABLE PX_INLINE void setPosition(const PxVec3T<Type>& position)
|
||
|
{
|
||
|
column3.x = position.x;
|
||
|
column3.y = position.y;
|
||
|
column3.z = position.z;
|
||
|
}
|
||
|
|
||
|
PX_CUDA_CALLABLE PX_FORCE_INLINE const Type* front() const
|
||
|
{
|
||
|
return &column0.x;
|
||
|
}
|
||
|
|
||
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec4T<Type>& operator[](PxU32 num)
|
||
|
{
|
||
|
return (&column0)[num];
|
||
|
}
|
||
|
PX_CUDA_CALLABLE PX_FORCE_INLINE const PxVec4T<Type>& operator[](PxU32 num) const
|
||
|
{
|
||
|
return (&column0)[num];
|
||
|
}
|
||
|
|
||
|
PX_CUDA_CALLABLE PX_INLINE void scale(const PxVec4T<Type>& p)
|
||
|
{
|
||
|
column0 *= p.x;
|
||
|
column1 *= p.y;
|
||
|
column2 *= p.z;
|
||
|
column3 *= p.w;
|
||
|
}
|
||
|
|
||
|
PX_CUDA_CALLABLE PX_INLINE const PxMat44T inverseRT(void) const
|
||
|
{
|
||
|
const PxVec3T<Type> r0(column0.x, column1.x, column2.x);
|
||
|
const PxVec3T<Type> r1(column0.y, column1.y, column2.y);
|
||
|
const PxVec3T<Type> r2(column0.z, column1.z, column2.z);
|
||
|
|
||
|
return PxMat44T(r0, r1, r2, -(r0 * column3.x + r1 * column3.y + r2 * column3.z));
|
||
|
}
|
||
|
|
||
|
PX_CUDA_CALLABLE PX_INLINE bool isFinite() const
|
||
|
{
|
||
|
return column0.isFinite() && column1.isFinite() && column2.isFinite() && column3.isFinite();
|
||
|
}
|
||
|
|
||
|
// Data, see above for format!
|
||
|
|
||
|
PxVec4T<Type> column0, column1, column2, column3; // the four base vectors
|
||
|
};
|
||
|
|
||
|
// implementation from PxTransform.h
|
||
|
template<class Type>
|
||
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxTransformT<Type>::PxTransformT(const PxMat44T<Type>& m)
|
||
|
{
|
||
|
const PxVec3T<Type> column0(m.column0.x, m.column0.y, m.column0.z);
|
||
|
const PxVec3T<Type> column1(m.column1.x, m.column1.y, m.column1.z);
|
||
|
const PxVec3T<Type> column2(m.column2.x, m.column2.y, m.column2.z);
|
||
|
|
||
|
q = PxQuatT<Type>(PxMat33T<Type>(column0, column1, column2));
|
||
|
p = PxVec3T<Type>(m.column3.x, m.column3.y, m.column3.z);
|
||
|
}
|
||
|
|
||
|
typedef PxMat44T<float> PxMat44;
|
||
|
typedef PxMat44T<double> PxMat44d;
|
||
|
|
||
|
#if !PX_DOXYGEN
|
||
|
} // namespace physx
|
||
|
#endif
|
||
|
|
||
|
/** @} */
|
||
|
#endif
|
||
|
|