physxCAPI/physxCDLL/include/foundation/PxMat33.h

513 lines
14 KiB
C
Raw Normal View History

2023-08-11 10:55:58 +08:00
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Copyright (c) 2008-2023 NVIDIA Corporation. All rights reserved.
// Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved.
// Copyright (c) 2001-2004 NovodeX AG. All rights reserved.
#ifndef PX_MAT33_H
#define PX_MAT33_H
/** \addtogroup foundation
@{
*/
#include "foundation/PxVec3.h"
#include "foundation/PxQuat.h"
#if !PX_DOXYGEN
namespace physx
{
#endif
/*!
\brief 3x3 matrix class
Some clarifications, as there have been much confusion about matrix formats etc in the past.
Short:
- Matrix have base vectors in columns (vectors are column matrices, 3x1 matrices).
- Matrix is physically stored in column major format
- Matrices are concaternated from left
Long:
Given three base vectors a, b and c the matrix is stored as
|a.x b.x c.x|
|a.y b.y c.y|
|a.z b.z c.z|
Vectors are treated as columns, so the vector v is
|x|
|y|
|z|
And matrices are applied _before_ the vector (pre-multiplication)
v' = M*v
|x'| |a.x b.x c.x| |x| |a.x*x + b.x*y + c.x*z|
|y'| = |a.y b.y c.y| * |y| = |a.y*x + b.y*y + c.y*z|
|z'| |a.z b.z c.z| |z| |a.z*x + b.z*y + c.z*z|
Physical storage and indexing:
To be compatible with popular 3d rendering APIs (read D3d and OpenGL)
the physical indexing is
|0 3 6|
|1 4 7|
|2 5 8|
index = column*3 + row
which in C++ translates to M[column][row]
The mathematical indexing is M_row,column and this is what is used for _-notation
so _12 is 1st row, second column and operator(row, column)!
*/
template<class Type>
class PxMat33T
{
public:
//! Default constructor
PX_CUDA_CALLABLE PX_FORCE_INLINE PxMat33T()
{
}
//! identity constructor
PX_CUDA_CALLABLE PX_INLINE PxMat33T(PxIDENTITY) :
column0(Type(1.0), Type(0.0), Type(0.0)),
column1(Type(0.0), Type(1.0), Type(0.0)),
column2(Type(0.0), Type(0.0), Type(1.0))
{
}
//! zero constructor
PX_CUDA_CALLABLE PX_INLINE PxMat33T(PxZERO) :
column0(Type(0.0)),
column1(Type(0.0)),
column2(Type(0.0))
{
}
//! Construct from three base vectors
PX_CUDA_CALLABLE PxMat33T(const PxVec3T<Type>& col0, const PxVec3T<Type>& col1, const PxVec3T<Type>& col2) :
column0(col0),
column1(col1),
column2(col2)
{
}
//! constructor from a scalar, which generates a multiple of the identity matrix
explicit PX_CUDA_CALLABLE PX_INLINE PxMat33T(Type r) :
column0(r, Type(0.0), Type(0.0)),
column1(Type(0.0), r, Type(0.0)),
column2(Type(0.0), Type(0.0), r)
{
}
//! Construct from Type[9]
explicit PX_CUDA_CALLABLE PX_INLINE PxMat33T(Type values[]) :
column0(values[0], values[1], values[2]),
column1(values[3], values[4], values[5]),
column2(values[6], values[7], values[8])
{
}
//! Construct from a quaternion
explicit PX_CUDA_CALLABLE PX_FORCE_INLINE PxMat33T(const PxQuatT<Type>& q)
{
// PT: TODO: PX-566
const Type x = q.x;
const Type y = q.y;
const Type z = q.z;
const Type w = q.w;
const Type x2 = x + x;
const Type y2 = y + y;
const Type z2 = z + z;
const Type xx = x2 * x;
const Type yy = y2 * y;
const Type zz = z2 * z;
const Type xy = x2 * y;
const Type xz = x2 * z;
const Type xw = x2 * w;
const Type yz = y2 * z;
const Type yw = y2 * w;
const Type zw = z2 * w;
column0 = PxVec3T<Type>(Type(1.0) - yy - zz, xy + zw, xz - yw);
column1 = PxVec3T<Type>(xy - zw, Type(1.0) - xx - zz, yz + xw);
column2 = PxVec3T<Type>(xz + yw, yz - xw, Type(1.0) - xx - yy);
}
//! Copy constructor
PX_CUDA_CALLABLE PX_INLINE PxMat33T(const PxMat33T& other) :
column0(other.column0),
column1(other.column1),
column2(other.column2)
{
}
//! Assignment operator
PX_CUDA_CALLABLE PX_FORCE_INLINE PxMat33T& operator=(const PxMat33T& other)
{
column0 = other.column0;
column1 = other.column1;
column2 = other.column2;
return *this;
}
//! Construct from diagonal, off-diagonals are zero.
PX_CUDA_CALLABLE PX_INLINE static const PxMat33T createDiagonal(const PxVec3T<Type>& d)
{
return PxMat33T(PxVec3T<Type>(d.x, Type(0.0), Type(0.0)),
PxVec3T<Type>(Type(0.0), d.y, Type(0.0)),
PxVec3T<Type>(Type(0.0), Type(0.0), d.z));
}
//! Computes the outer product of two vectors
PX_CUDA_CALLABLE PX_INLINE static const PxMat33T outer(const PxVec3T<Type>& a, const PxVec3T<Type>& b)
{
return PxMat33T(a * b.x, a * b.y, a * b.z);
}
/**
\brief returns true if the two matrices are exactly equal
*/
PX_CUDA_CALLABLE PX_INLINE bool operator==(const PxMat33T& m) const
{
return column0 == m.column0 && column1 == m.column1 && column2 == m.column2;
}
//! Get transposed matrix
PX_CUDA_CALLABLE PX_FORCE_INLINE const PxMat33T getTranspose() const
{
const PxVec3T<Type> v0(column0.x, column1.x, column2.x);
const PxVec3T<Type> v1(column0.y, column1.y, column2.y);
const PxVec3T<Type> v2(column0.z, column1.z, column2.z);
return PxMat33T(v0, v1, v2);
}
//! Get the real inverse
PX_CUDA_CALLABLE PX_INLINE const PxMat33T getInverse() const
{
const Type det = getDeterminant();
PxMat33T inverse;
if(det != Type(0.0))
{
const Type invDet = Type(1.0) / det;
inverse.column0.x = invDet * (column1.y * column2.z - column2.y * column1.z);
inverse.column0.y = invDet * -(column0.y * column2.z - column2.y * column0.z);
inverse.column0.z = invDet * (column0.y * column1.z - column0.z * column1.y);
inverse.column1.x = invDet * -(column1.x * column2.z - column1.z * column2.x);
inverse.column1.y = invDet * (column0.x * column2.z - column0.z * column2.x);
inverse.column1.z = invDet * -(column0.x * column1.z - column0.z * column1.x);
inverse.column2.x = invDet * (column1.x * column2.y - column1.y * column2.x);
inverse.column2.y = invDet * -(column0.x * column2.y - column0.y * column2.x);
inverse.column2.z = invDet * (column0.x * column1.y - column1.x * column0.y);
return inverse;
}
else
{
return PxMat33T(PxIdentity);
}
}
//! Get determinant
PX_CUDA_CALLABLE PX_INLINE Type getDeterminant() const
{
return column0.dot(column1.cross(column2));
}
//! Unary minus
PX_CUDA_CALLABLE PX_INLINE const PxMat33T operator-() const
{
return PxMat33T(-column0, -column1, -column2);
}
//! Add
PX_CUDA_CALLABLE PX_INLINE const PxMat33T operator+(const PxMat33T& other) const
{
return PxMat33T(column0 + other.column0, column1 + other.column1, column2 + other.column2);
}
//! Subtract
PX_CUDA_CALLABLE PX_INLINE const PxMat33T operator-(const PxMat33T& other) const
{
return PxMat33T(column0 - other.column0, column1 - other.column1, column2 - other.column2);
}
//! Scalar multiplication
PX_CUDA_CALLABLE PX_INLINE const PxMat33T operator*(Type scalar) const
{
return PxMat33T(column0 * scalar, column1 * scalar, column2 * scalar);
}
template<class Type2>
PX_CUDA_CALLABLE PX_INLINE friend PxMat33T<Type2> operator*(Type2, const PxMat33T<Type2>&);
//! Matrix vector multiplication (returns 'this->transform(vec)')
PX_CUDA_CALLABLE PX_INLINE const PxVec3T<Type> operator*(const PxVec3T<Type>& vec) const
{
return transform(vec);
}
// a <op>= b operators
//! Matrix multiplication
PX_CUDA_CALLABLE PX_FORCE_INLINE const PxMat33T operator*(const PxMat33T& other) const
{
// Rows from this <dot> columns from other
// column0 = transform(other.column0) etc
return PxMat33T(transform(other.column0),
transform(other.column1),
transform(other.column2));
}
//! Equals-add
PX_CUDA_CALLABLE PX_INLINE PxMat33T& operator+=(const PxMat33T& other)
{
column0 += other.column0;
column1 += other.column1;
column2 += other.column2;
return *this;
}
//! Equals-sub
PX_CUDA_CALLABLE PX_INLINE PxMat33T& operator-=(const PxMat33T& other)
{
column0 -= other.column0;
column1 -= other.column1;
column2 -= other.column2;
return *this;
}
//! Equals scalar multiplication
PX_CUDA_CALLABLE PX_INLINE PxMat33T& operator*=(Type scalar)
{
column0 *= scalar;
column1 *= scalar;
column2 *= scalar;
return *this;
}
//! Equals matrix multiplication
PX_CUDA_CALLABLE PX_INLINE PxMat33T& operator*=(const PxMat33T& other)
{
*this = *this * other;
return *this;
}
//! Element access, mathematical way!
PX_CUDA_CALLABLE PX_FORCE_INLINE Type operator()(PxU32 row, PxU32 col) const
{
return (*this)[col][row];
}
//! Element access, mathematical way!
PX_CUDA_CALLABLE PX_FORCE_INLINE Type& operator()(PxU32 row, PxU32 col)
{
return (*this)[col][row];
}
// Transform etc
//! Transform vector by matrix, equal to v' = M*v
PX_CUDA_CALLABLE PX_FORCE_INLINE const PxVec3T<Type> transform(const PxVec3T<Type>& other) const
{
return column0 * other.x + column1 * other.y + column2 * other.z;
}
//! Transform vector by matrix transpose, v' = M^t*v
PX_CUDA_CALLABLE PX_INLINE const PxVec3T<Type> transformTranspose(const PxVec3T<Type>& other) const
{
return PxVec3T<Type>(column0.dot(other), column1.dot(other), column2.dot(other));
}
PX_CUDA_CALLABLE PX_FORCE_INLINE const Type* front() const
{
return &column0.x;
}
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3T<Type>& operator[](PxU32 num)
{
return (&column0)[num];
}
PX_CUDA_CALLABLE PX_FORCE_INLINE const PxVec3T<Type>& operator[](PxU32 num) const
{
return (&column0)[num];
}
// Data, see above for format!
PxVec3T<Type> column0, column1, column2; // the three base vectors
};
template<class Type>
PX_CUDA_CALLABLE PX_INLINE PxMat33T<Type> operator*(Type scalar, const PxMat33T<Type>& m)
{
return PxMat33T<Type>(scalar * m.column0, scalar * m.column1, scalar * m.column2);
}
// implementation from PxQuat.h
template<class Type>
PX_CUDA_CALLABLE PX_INLINE PxQuatT<Type>::PxQuatT(const PxMat33T<Type>& m)
{
if(m.column2.z < Type(0))
{
if(m.column0.x > m.column1.y)
{
const Type t = Type(1.0) + m.column0.x - m.column1.y - m.column2.z;
*this = PxQuatT<Type>(t, m.column0.y + m.column1.x, m.column2.x + m.column0.z, m.column1.z - m.column2.y) * (Type(0.5) / PxSqrt(t));
}
else
{
const Type t = Type(1.0) - m.column0.x + m.column1.y - m.column2.z;
*this = PxQuatT<Type>(m.column0.y + m.column1.x, t, m.column1.z + m.column2.y, m.column2.x - m.column0.z) * (Type(0.5) / PxSqrt(t));
}
}
else
{
if(m.column0.x < -m.column1.y)
{
const Type t = Type(1.0) - m.column0.x - m.column1.y + m.column2.z;
*this = PxQuatT<Type>(m.column2.x + m.column0.z, m.column1.z + m.column2.y, t, m.column0.y - m.column1.x) * (Type(0.5) / PxSqrt(t));
}
else
{
const Type t = Type(1.0) + m.column0.x + m.column1.y + m.column2.z;
*this = PxQuatT<Type>(m.column1.z - m.column2.y, m.column2.x - m.column0.z, m.column0.y - m.column1.x, t) * (Type(0.5) / PxSqrt(t));
}
}
}
typedef PxMat33T<float> PxMat33;
typedef PxMat33T<double> PxMat33d;
/**
\brief Sets a rotation matrix around the X axis.
\param m [out] output rotation matrix
\param angle [in] desired angle
*/
PX_INLINE void PxSetRotX(PxMat33& m, PxReal angle)
{
m = PxMat33(PxIdentity);
PxReal sin, cos;
PxSinCos(angle, sin, cos);
m[1][1] = m[2][2] = cos;
m[1][2] = sin;
m[2][1] = -sin;
}
/**
\brief Sets a rotation matrix around the Y axis.
\param m [out] output rotation matrix
\param angle [in] desired angle
*/
PX_INLINE void PxSetRotY(PxMat33& m, PxReal angle)
{
m = PxMat33(PxIdentity);
PxReal sin, cos;
PxSinCos(angle, sin, cos);
m[0][0] = m[2][2] = cos;
m[0][2] = -sin;
m[2][0] = sin;
}
/**
\brief Sets a rotation matrix around the Z axis.
\param m [out] output rotation matrix
\param angle [in] desired angle
*/
PX_INLINE void PxSetRotZ(PxMat33& m, PxReal angle)
{
m = PxMat33(PxIdentity);
PxReal sin, cos;
PxSinCos(angle, sin, cos);
m[0][0] = m[1][1] = cos;
m[0][1] = sin;
m[1][0] = -sin;
}
/**
\brief Returns a rotation quaternion around the X axis.
\param angle [in] desired angle
\return Quaternion that rotates around the desired axis
*/
PX_INLINE PxQuat PxGetRotXQuat(float angle)
{
PxMat33 m;
PxSetRotX(m, angle);
return PxQuat(m);
}
/**
\brief Returns a rotation quaternion around the Y axis.
\param angle [in] desired angle
\return Quaternion that rotates around the desired axis
*/
PX_INLINE PxQuat PxGetRotYQuat(float angle)
{
PxMat33 m;
PxSetRotY(m, angle);
return PxQuat(m);
}
/**
\brief Returns a rotation quaternion around the Z axis.
\param angle [in] desired angle
\return Quaternion that rotates around the desired axis
*/
PX_INLINE PxQuat PxGetRotZQuat(float angle)
{
PxMat33 m;
PxSetRotZ(m, angle);
return PxQuat(m);
}
#if !PX_DOXYGEN
} // namespace physx
#endif
/** @} */
#endif