163 lines
4.4 KiB
C
163 lines
4.4 KiB
C
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions
|
||
|
// are met:
|
||
|
// * Redistributions of source code must retain the above copyright
|
||
|
// notice, this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above copyright
|
||
|
// notice, this list of conditions and the following disclaimer in the
|
||
|
// documentation and/or other materials provided with the distribution.
|
||
|
// * Neither the name of NVIDIA CORPORATION nor the names of its
|
||
|
// contributors may be used to endorse or promote products derived
|
||
|
// from this software without specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY
|
||
|
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||
|
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||
|
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
//
|
||
|
// Copyright (c) 2008-2023 NVIDIA Corporation. All rights reserved.
|
||
|
// Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved.
|
||
|
// Copyright (c) 2001-2004 NovodeX AG. All rights reserved.
|
||
|
|
||
|
#ifndef PX_PLANE_H
|
||
|
#define PX_PLANE_H
|
||
|
|
||
|
/** \addtogroup foundation
|
||
|
@{
|
||
|
*/
|
||
|
|
||
|
#include "foundation/PxTransform.h"
|
||
|
|
||
|
#if !PX_DOXYGEN
|
||
|
namespace physx
|
||
|
{
|
||
|
#endif
|
||
|
|
||
|
/**
|
||
|
\brief Representation of a plane.
|
||
|
|
||
|
Plane equation used: n.dot(v) + d = 0
|
||
|
*/
|
||
|
class PxPlane
|
||
|
{
|
||
|
public:
|
||
|
/**
|
||
|
\brief Constructor
|
||
|
*/
|
||
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxPlane()
|
||
|
{
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
\brief Constructor from a normal and a distance
|
||
|
*/
|
||
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxPlane(float nx, float ny, float nz, float distance) : n(nx, ny, nz), d(distance)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
\brief Constructor from a normal and a distance
|
||
|
*/
|
||
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxPlane(const PxVec3& normal, float distance) : n(normal), d(distance)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
\brief Constructor from a point on the plane and a normal
|
||
|
*/
|
||
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxPlane(const PxVec3& point, const PxVec3& normal)
|
||
|
: n(normal), d(-point.dot(n)) // p satisfies normal.dot(p) + d = 0
|
||
|
{
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
\brief Constructor from three points
|
||
|
*/
|
||
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxPlane(const PxVec3& p0, const PxVec3& p1, const PxVec3& p2)
|
||
|
{
|
||
|
n = (p1 - p0).cross(p2 - p0).getNormalized();
|
||
|
d = -p0.dot(n);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
\brief returns true if the two planes are exactly equal
|
||
|
*/
|
||
|
PX_CUDA_CALLABLE PX_INLINE bool operator==(const PxPlane& p) const
|
||
|
{
|
||
|
return n == p.n && d == p.d;
|
||
|
}
|
||
|
|
||
|
PX_CUDA_CALLABLE PX_FORCE_INLINE float distance(const PxVec3& p) const
|
||
|
{
|
||
|
return p.dot(n) + d;
|
||
|
}
|
||
|
|
||
|
PX_CUDA_CALLABLE PX_FORCE_INLINE bool contains(const PxVec3& p) const
|
||
|
{
|
||
|
return PxAbs(distance(p)) < (1.0e-7f);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
\brief projects p into the plane
|
||
|
*/
|
||
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 project(const PxVec3& p) const
|
||
|
{
|
||
|
return p - n * distance(p);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
\brief find an arbitrary point in the plane
|
||
|
*/
|
||
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 pointInPlane() const
|
||
|
{
|
||
|
return -n * d;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
\brief equivalent plane with unit normal
|
||
|
*/
|
||
|
|
||
|
PX_CUDA_CALLABLE PX_FORCE_INLINE void normalize()
|
||
|
{
|
||
|
float denom = 1.0f / n.magnitude();
|
||
|
n *= denom;
|
||
|
d *= denom;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
\brief transform plane
|
||
|
*/
|
||
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxPlane transform(const PxTransform& pose) const
|
||
|
{
|
||
|
const PxVec3 transformedNormal = pose.rotate(n);
|
||
|
return PxPlane(transformedNormal, d - pose.p.dot(transformedNormal));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
\brief inverse-transform plane
|
||
|
*/
|
||
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxPlane inverseTransform(const PxTransform& pose) const
|
||
|
{
|
||
|
const PxVec3 transformedNormal = pose.rotateInv(n);
|
||
|
return PxPlane(transformedNormal, d + pose.p.dot(n));
|
||
|
}
|
||
|
|
||
|
PxVec3 n; //!< The normal to the plane
|
||
|
float d; //!< The distance from the origin
|
||
|
};
|
||
|
|
||
|
#if !PX_DOXYGEN
|
||
|
} // namespace physx
|
||
|
#endif
|
||
|
|
||
|
/** @} */
|
||
|
#endif
|
||
|
|