physxCAPI/physxCDLL/include/foundation/PxPool.h

270 lines
7.5 KiB
C
Raw Normal View History

2023-08-11 10:55:58 +08:00
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Copyright (c) 2008-2023 NVIDIA Corporation. All rights reserved.
// Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved.
// Copyright (c) 2001-2004 NovodeX AG. All rights reserved.
#ifndef PX_POOL_H
#define PX_POOL_H
#include "foundation/PxArray.h"
#include "foundation/PxSort.h"
#include "foundation/PxBasicTemplates.h"
#include "foundation/PxInlineArray.h"
#include "foundation/PxMemory.h"
namespace physx
{
/*!
Simple allocation pool
*/
template <class T, class Alloc = typename PxAllocatorTraits<T>::Type>
class PxPoolBase : public PxUserAllocated, public Alloc
{
PX_NOCOPY(PxPoolBase)
protected:
PxPoolBase(const Alloc& alloc, uint32_t elementsPerSlab, uint32_t slabSize)
: Alloc(alloc), mSlabs(alloc), mElementsPerSlab(elementsPerSlab), mUsed(0), mSlabSize(slabSize), mFreeElement(0)
{
mSlabs.reserve(64);
#if PX_CLANG
#if PX_LINUX
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunused-local-typedef"
#endif // PX_LINUX
#endif // PX_CLANG
PX_COMPILE_TIME_ASSERT(sizeof(T) >= sizeof(size_t));
#if PX_CLANG
#if PX_LINUX
#pragma clang diagnostic pop
#endif
#endif
}
public:
~PxPoolBase()
{
if(mUsed)
disposeElements();
for(void** slabIt = mSlabs.begin(), *slabEnd = mSlabs.end(); slabIt != slabEnd; ++slabIt)
Alloc::deallocate(*slabIt);
}
// Allocate space for single object
PX_INLINE T* allocate()
{
if(mFreeElement == 0)
allocateSlab();
T* p = reinterpret_cast<T*>(mFreeElement);
mFreeElement = mFreeElement->mNext;
mUsed++;
PxMarkSerializedMemory(p, sizeof(T));
return p;
}
// Put space for a single element back in the lists
PX_INLINE void deallocate(T* p)
{
if(p)
{
PX_ASSERT(mUsed);
mUsed--;
push(reinterpret_cast<FreeList*>(p));
}
}
PX_INLINE T* construct()
{
T* t = allocate();
return t ? PX_PLACEMENT_NEW(t, T()) : NULL;
}
template <class A1>
PX_INLINE T* construct(A1& a)
{
T* t = allocate();
return t ? PX_PLACEMENT_NEW(t, T(a)) : NULL;
}
template <class A1, class A2>
PX_INLINE T* construct(A1& a, A2& b)
{
T* t = allocate();
return t ? PX_PLACEMENT_NEW(t, T(a, b)) : NULL;
}
template <class A1, class A2, class A3>
PX_INLINE T* construct(A1& a, A2& b, A3& c)
{
T* t = allocate();
return t ? PX_PLACEMENT_NEW(t, T(a, b, c)) : NULL;
}
template <class A1, class A2, class A3>
PX_INLINE T* construct(A1* a, A2& b, A3& c)
{
T* t = allocate();
return t ? PX_PLACEMENT_NEW(t, T(a, b, c)) : NULL;
}
template <class A1, class A2, class A3, class A4>
PX_INLINE T* construct(A1& a, A2& b, A3& c, A4& d)
{
T* t = allocate();
return t ? PX_PLACEMENT_NEW(t, T(a, b, c, d)) : NULL;
}
template <class A1, class A2, class A3, class A4, class A5>
PX_INLINE T* construct(A1& a, A2& b, A3& c, A4& d, A5& e)
{
T* t = allocate();
return t ? PX_PLACEMENT_NEW(t, T(a, b, c, d, e)) : NULL;
}
template <class A1, class A2, class A3, class A4, class A5, class A6>
PX_INLINE T* construct(A1& a, A2& b, A3& c, A4& d, A5& e, A6& f)
{
T* t = allocate();
return t ? PX_PLACEMENT_NEW(t, T(a, b, c, d, e, f)) : NULL;
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7>
PX_INLINE T* construct(A1& a, A2& b, A3& c, A4& d, A5& e, A6& f, A7& g)
{
T* t = allocate();
return t ? PX_PLACEMENT_NEW(t, T(a, b, c, d, e, f, g)) : NULL;
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
PX_INLINE T* construct(A1& a, A2& b, A3& c, A4& d, A5& e, A6& f, A7& g, A8& h)
{
T* t = allocate();
return t ? PX_PLACEMENT_NEW(t, T(a, b, c, d, e, f, g, h)) : NULL;
}
PX_INLINE void destroy(T* const p)
{
if(p)
{
p->~T();
deallocate(p);
}
}
protected:
struct FreeList
{
FreeList* mNext;
};
// All the allocated slabs, sorted by pointer
PxArray<void*, Alloc> mSlabs;
uint32_t mElementsPerSlab;
uint32_t mUsed;
uint32_t mSlabSize;
FreeList* mFreeElement; // Head of free-list
// Helper function to get bitmap of allocated elements
void push(FreeList* p)
{
p->mNext = mFreeElement;
mFreeElement = p;
}
// Allocate a slab and segregate it into the freelist
void allocateSlab()
{
T* slab = reinterpret_cast<T*>(Alloc::allocate(mSlabSize, __FILE__, __LINE__));
mSlabs.pushBack(slab);
// Build a chain of nodes for the freelist
T* it = slab + mElementsPerSlab;
while(--it >= slab)
push(reinterpret_cast<FreeList*>(it));
}
/*
Cleanup method. Go through all active slabs and call destructor for live objects,
then free their memory
*/
void disposeElements()
{
PxArray<void*, Alloc> freeNodes(*this);
while(mFreeElement)
{
freeNodes.pushBack(mFreeElement);
mFreeElement = mFreeElement->mNext;
}
Alloc& alloc(*this);
PxSort(freeNodes.begin(), freeNodes.size(), PxLess<void*>(), alloc);
PxSort(mSlabs.begin(), mSlabs.size(), PxLess<void*>(), alloc);
typename PxArray<void*, Alloc>::Iterator slabIt = mSlabs.begin(), slabEnd = mSlabs.end();
for(typename PxArray<void*, Alloc>::Iterator freeIt = freeNodes.begin(); slabIt != slabEnd; ++slabIt)
{
for(T* tIt = reinterpret_cast<T*>(*slabIt), *tEnd = tIt + mElementsPerSlab; tIt != tEnd; ++tIt)
{
if(freeIt != freeNodes.end() && *freeIt == tIt)
++freeIt;
else
tIt->~T();
}
}
}
};
// original pool implementation
template <class T, class Alloc = typename PxAllocatorTraits<T>::Type>
class PxPool : public PxPoolBase<T, Alloc>
{
public:
PxPool(const Alloc& alloc = Alloc(), uint32_t elementsPerSlab = 32)
: PxPoolBase<T, Alloc>(alloc, elementsPerSlab, elementsPerSlab * sizeof(T))
{
}
};
// allows specification of the slab size instead of the occupancy
template <class T, uint32_t slabSize, class Alloc = typename PxAllocatorTraits<T>::Type>
class PxPool2 : public PxPoolBase<T, Alloc>
{
public:
PxPool2(const Alloc& alloc = Alloc()) : PxPoolBase<T, Alloc>(alloc, slabSize / sizeof(T), slabSize)
{
}
};
} // namespace physx
#endif