263 lines
7.4 KiB
C
263 lines
7.4 KiB
C
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions
|
||
|
// are met:
|
||
|
// * Redistributions of source code must retain the above copyright
|
||
|
// notice, this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above copyright
|
||
|
// notice, this list of conditions and the following disclaimer in the
|
||
|
// documentation and/or other materials provided with the distribution.
|
||
|
// * Neither the name of NVIDIA CORPORATION nor the names of its
|
||
|
// contributors may be used to endorse or promote products derived
|
||
|
// from this software without specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY
|
||
|
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||
|
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||
|
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
//
|
||
|
// Copyright (c) 2008-2023 NVIDIA Corporation. All rights reserved.
|
||
|
// Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved.
|
||
|
// Copyright (c) 2001-2004 NovodeX AG. All rights reserved.
|
||
|
|
||
|
#ifndef PX_TRANSFORM_H
|
||
|
#define PX_TRANSFORM_H
|
||
|
/** \addtogroup foundation
|
||
|
@{
|
||
|
*/
|
||
|
|
||
|
#include "foundation/PxQuat.h"
|
||
|
|
||
|
#if !PX_DOXYGEN
|
||
|
namespace physx
|
||
|
{
|
||
|
#endif
|
||
|
|
||
|
/*!
|
||
|
\brief class representing a rigid euclidean transform as a quaternion and a vector
|
||
|
*/
|
||
|
|
||
|
template<class Type>
|
||
|
class PxTransformT
|
||
|
{
|
||
|
public:
|
||
|
PxQuatT<Type> q;
|
||
|
PxVec3T<Type> p;
|
||
|
|
||
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxTransformT()
|
||
|
{
|
||
|
}
|
||
|
|
||
|
PX_CUDA_CALLABLE PX_FORCE_INLINE explicit PxTransformT(PxIDENTITY) : q(PxIdentity), p(PxZero)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
PX_CUDA_CALLABLE PX_FORCE_INLINE explicit PxTransformT(const PxVec3T<Type>& position) : q(PxIdentity), p(position)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
PX_CUDA_CALLABLE PX_FORCE_INLINE explicit PxTransformT(const PxQuatT<Type>& orientation) : q(orientation), p(Type(0))
|
||
|
{
|
||
|
PX_ASSERT(orientation.isSane());
|
||
|
}
|
||
|
|
||
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxTransformT(Type x, Type y, Type z, PxQuatT<Type> aQ = PxQuatT<Type>(PxIdentity)) : q(aQ), p(x, y, z)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxTransformT(const PxVec3T<Type>& p0, const PxQuatT<Type>& q0) : q(q0), p(p0)
|
||
|
{
|
||
|
PX_ASSERT(q0.isSane());
|
||
|
}
|
||
|
|
||
|
PX_CUDA_CALLABLE PX_FORCE_INLINE explicit PxTransformT(const PxMat44T<Type>& m); // defined in PxMat44.h
|
||
|
|
||
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxTransformT(const PxTransformT& other)
|
||
|
{
|
||
|
p = other.p;
|
||
|
q = other.q;
|
||
|
}
|
||
|
|
||
|
PX_CUDA_CALLABLE PX_FORCE_INLINE void operator=(const PxTransformT& other)
|
||
|
{
|
||
|
p = other.p;
|
||
|
q = other.q;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
\brief returns true if the two transforms are exactly equal
|
||
|
*/
|
||
|
PX_CUDA_CALLABLE PX_INLINE bool operator==(const PxTransformT& t) const
|
||
|
{
|
||
|
return p == t.p && q == t.q;
|
||
|
}
|
||
|
|
||
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxTransformT operator*(const PxTransformT& x) const
|
||
|
{
|
||
|
PX_ASSERT(x.isSane());
|
||
|
return transform(x);
|
||
|
}
|
||
|
|
||
|
//! Equals matrix multiplication
|
||
|
PX_CUDA_CALLABLE PX_INLINE PxTransformT& operator*=(const PxTransformT& other)
|
||
|
{
|
||
|
*this = *this * other;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxTransformT getInverse() const
|
||
|
{
|
||
|
PX_ASSERT(isFinite());
|
||
|
return PxTransformT(q.rotateInv(-p), q.getConjugate());
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
\brief return a normalized transform (i.e. one in which the quaternion has unit magnitude)
|
||
|
*/
|
||
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxTransformT getNormalized() const
|
||
|
{
|
||
|
return PxTransformT(p, q.getNormalized());
|
||
|
}
|
||
|
|
||
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3T<Type> transform(const PxVec3T<Type>& input) const
|
||
|
{
|
||
|
PX_ASSERT(isFinite());
|
||
|
return q.rotate(input) + p;
|
||
|
}
|
||
|
|
||
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3T<Type> transformInv(const PxVec3T<Type>& input) const
|
||
|
{
|
||
|
PX_ASSERT(isFinite());
|
||
|
return q.rotateInv(input - p);
|
||
|
}
|
||
|
|
||
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3T<Type> rotate(const PxVec3T<Type>& input) const
|
||
|
{
|
||
|
PX_ASSERT(isFinite());
|
||
|
return q.rotate(input);
|
||
|
}
|
||
|
|
||
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3T<Type> rotateInv(const PxVec3T<Type>& input) const
|
||
|
{
|
||
|
PX_ASSERT(isFinite());
|
||
|
return q.rotateInv(input);
|
||
|
}
|
||
|
|
||
|
//! Transform transform to parent (returns compound transform: first src, then *this)
|
||
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxTransformT transform(const PxTransformT& src) const
|
||
|
{
|
||
|
PX_ASSERT(src.isSane());
|
||
|
PX_ASSERT(isSane());
|
||
|
// src = [srct, srcr] -> [r*srct + t, r*srcr]
|
||
|
return PxTransformT(q.rotate(src.p) + p, q * src.q);
|
||
|
}
|
||
|
|
||
|
//! Transform transform from parent (returns compound transform: first src, then this->inverse)
|
||
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxTransformT transformInv(const PxTransformT& src) const
|
||
|
{
|
||
|
PX_ASSERT(src.isSane());
|
||
|
PX_ASSERT(isFinite());
|
||
|
// src = [srct, srcr] -> [r^-1*(srct-t), r^-1*srcr]
|
||
|
const PxQuatT<Type> qinv = q.getConjugate();
|
||
|
return PxTransformT(qinv.rotate(src.p - p), qinv * src.q);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
\brief returns true if finite and q is a unit quaternion
|
||
|
*/
|
||
|
PX_CUDA_CALLABLE bool isValid() const
|
||
|
{
|
||
|
return p.isFinite() && q.isFinite() && q.isUnit();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
\brief returns true if finite and quat magnitude is reasonably close to unit to allow for some accumulation of error
|
||
|
vs isValid
|
||
|
*/
|
||
|
PX_CUDA_CALLABLE bool isSane() const
|
||
|
{
|
||
|
return isFinite() && q.isSane();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
\brief returns true if all elems are finite (not NAN or INF, etc.)
|
||
|
*/
|
||
|
PX_CUDA_CALLABLE PX_FORCE_INLINE bool isFinite() const
|
||
|
{
|
||
|
return p.isFinite() && q.isFinite();
|
||
|
}
|
||
|
};
|
||
|
|
||
|
typedef PxTransformT<float> PxTransform;
|
||
|
typedef PxTransformT<double> PxTransformd;
|
||
|
|
||
|
/*!
|
||
|
\brief A generic padded & aligned transform class.
|
||
|
|
||
|
This can be used for safe faster loads & stores, and faster address computations
|
||
|
(the default PxTransformT often generating imuls for this otherwise). Padding bytes
|
||
|
can be reused to store useful data if needed.
|
||
|
*/
|
||
|
struct PX_ALIGN_PREFIX(16) PxTransformPadded : PxTransform
|
||
|
{
|
||
|
PX_FORCE_INLINE PxTransformPadded()
|
||
|
{
|
||
|
}
|
||
|
|
||
|
PX_FORCE_INLINE PxTransformPadded(const PxTransformPadded& other) : PxTransform(other)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
PX_FORCE_INLINE explicit PxTransformPadded(const PxTransform& other) : PxTransform(other)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
PX_FORCE_INLINE explicit PxTransformPadded(PxIDENTITY) : PxTransform(PxIdentity)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
PX_FORCE_INLINE explicit PxTransformPadded(const PxVec3& position) : PxTransform(position)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
PX_FORCE_INLINE explicit PxTransformPadded(const PxQuat& orientation) : PxTransform(orientation)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
PX_FORCE_INLINE PxTransformPadded(const PxVec3& p0, const PxQuat& q0) : PxTransform(p0, q0)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
PX_FORCE_INLINE void operator=(const PxTransformPadded& other)
|
||
|
{
|
||
|
p = other.p;
|
||
|
q = other.q;
|
||
|
}
|
||
|
|
||
|
PX_FORCE_INLINE void operator=(const PxTransform& other)
|
||
|
{
|
||
|
p = other.p;
|
||
|
q = other.q;
|
||
|
}
|
||
|
|
||
|
PxU32 padding;
|
||
|
}
|
||
|
PX_ALIGN_SUFFIX(16);
|
||
|
PX_COMPILE_TIME_ASSERT(sizeof(PxTransformPadded)==32);
|
||
|
|
||
|
typedef PxTransformPadded PxTransform32;
|
||
|
|
||
|
#if !PX_DOXYGEN
|
||
|
} // namespace physx
|
||
|
#endif
|
||
|
|
||
|
/** @} */
|
||
|
#endif
|
||
|
|