// Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // * Neither the name of NVIDIA CORPORATION nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Copyright (c) 2008-2023 NVIDIA Corporation. All rights reserved. // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. #ifndef PX_BIT_UTILS_H #define PX_BIT_UTILS_H #include "foundation/PxMathIntrinsics.h" #include "foundation/PxAssert.h" #include "foundation/PxIntrinsics.h" #include "foundation/PxMathIntrinsics.h" #if !PX_DOXYGEN namespace physx { #endif PX_INLINE uint32_t PxBitCount(uint32_t v) { // from http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel uint32_t const w = v - ((v >> 1) & 0x55555555); uint32_t const x = (w & 0x33333333) + ((w >> 2) & 0x33333333); return (((x + (x >> 4)) & 0xF0F0F0F) * 0x1010101) >> 24; } PX_INLINE bool PxIsPowerOfTwo(uint32_t x) { return x != 0 && (x & (x - 1)) == 0; } // "Next Largest Power of 2 // Given a binary integer value x, the next largest power of 2 can be computed by a SWAR algorithm // that recursively "folds" the upper bits into the lower bits. This process yields a bit vector with // the same most significant 1 as x, but all 1's below it. Adding 1 to that value yields the next // largest power of 2. For a 32-bit value:" PX_INLINE uint32_t PxNextPowerOfTwo(uint32_t x) { x |= (x >> 1); x |= (x >> 2); x |= (x >> 4); x |= (x >> 8); x |= (x >> 16); return x + 1; } /*! Return the index of the highest set bit. Not valid for zero arg. */ PX_INLINE uint32_t PxLowestSetBit(uint32_t x) { PX_ASSERT(x); return PxLowestSetBitUnsafe(x); } /*! Return the index of the highest set bit. Not valid for zero arg. */ PX_INLINE uint32_t PxHighestSetBit(uint32_t x) { PX_ASSERT(x); return PxHighestSetBitUnsafe(x); } // Helper function to approximate log2 of an integer value // assumes that the input is actually power of two. PX_INLINE uint32_t PxILog2(uint32_t num) { for(uint32_t i = 0; i < 32; i++) { num >>= 1; if(num == 0) return i; } PX_ASSERT(0); return uint32_t(-1); } #if !PX_DOXYGEN } // namespace physx #endif #endif