// Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // * Neither the name of NVIDIA CORPORATION nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Copyright (c) 2008-2023 NVIDIA Corporation. All rights reserved. // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. #ifndef PX_ANISOTROPY_H #define PX_ANISOTROPY_H /** \addtogroup extensions @{ */ #include "cudamanager/PxCudaContext.h" #include "cudamanager/PxCudaContextManager.h" #include "foundation/PxSimpleTypes.h" #include "foundation/PxVec4.h" #include "PxParticleSystem.h" #include "foundation/PxArray.h" #include "PxParticleGpu.h" #if !PX_DOXYGEN namespace physx { #endif #if PX_SUPPORT_GPU_PHYSX class PxgKernelLauncher; class PxParticleNeighborhoodProvider; /** \brief Computes anisotropy information for a particle system to improve rendering quality */ class PxAnisotropyGenerator { public: /** \brief Schedules the compuation of anisotropy information on the specified cuda stream \param[in] gpuParticleSystem A gpu pointer to access particle system data \param[in] numParticles The number of particles \param[in] stream The stream on which the cuda call gets scheduled */ virtual void generateAnisotropy(PxGpuParticleSystem* gpuParticleSystem, PxU32 numParticles, CUstream stream) = 0; /** \brief Schedules the compuation of anisotropy information on the specified cuda stream \param[in] particlePositionsGpu A gpu pointer containing the particle positions \param[in] neighborhoodProvider A neighborhood provider object that supports fast neighborhood queries \param[in] numParticles The number of particles \param[in] particleContactOffset The particle contact offset \param[in] stream The stream on which the cuda call gets scheduled */ virtual void generateAnisotropy(PxVec4* particlePositionsGpu, PxParticleNeighborhoodProvider& neighborhoodProvider, PxU32 numParticles, PxReal particleContactOffset, CUstream stream) = 0; /** \brief Set a host buffer that holds the anisotropy data after the timestep completed \param[in] anisotropy1 A host buffer holding the first row of the anisotropy matrix with memory for all particles already allocated \param[in] anisotropy2 A host buffer holding the second row of the anisotropy matrix with memory for all particles already allocated \param[in] anisotropy3 A host buffer holding the third row of the anisotropy matrix with memory for all particles already allocated */ virtual void setResultBufferHost(PxVec4* anisotropy1, PxVec4* anisotropy2, PxVec4* anisotropy3) = 0; /** \brief Set a device buffer that holds the anisotrpy data after the timestep completed \param[in] anisotropy1 A device buffer holding the first row of the anisotropy matrix with memory for all particles already allocated \param[in] anisotropy2 A device buffer holding the second row of the anisotropy matrix with memory for all particles already allocated \param[in] anisotropy3 A device buffer holding the third row of the anisotropy matrix with memory for all particles already allocated */ virtual void setResultBufferDevice(PxVec4* anisotropy1, PxVec4* anisotropy2, PxVec4* anisotropy3) = 0; /** \brief Sets the maximum value anisotropy can reach in any direction \param[in] maxAnisotropy The maximum anisotropy value */ virtual void setAnisotropyMax(float maxAnisotropy) = 0; /** \brief Sets the minimum value anisotropy can reach in any direction \param[in] minAnisotropy The minimum anisotropy value */ virtual void setAnisotropyMin(float minAnisotropy) = 0; /** \brief Sets the anisotropy scale \param[in] anisotropyScale The anisotropy scale */ virtual void setAnisotropyScale(float anisotropyScale) = 0; /** \brief Gets the maximal number of particles \return The maximal number of particles */ virtual PxU32 getMaxParticles() const = 0; /** \brief Sets the maximal number of particles \param[in] maxParticles The maximal number of particles */ virtual void setMaxParticles(PxU32 maxParticles) = 0; /** \brief Gets the device pointer for the anisotropy in x direction. Only available after calling setResultBufferHost or setResultBufferDevice \return The device pointer for the anisotropy x direction and scale (w component contains the scale) */ virtual PxVec4* getAnisotropy1DevicePointer() const = 0; /** \brief Gets the device pointer for the anisotropy in y direction. Only available after calling setResultBufferHost or setResultBufferDevice \return The device pointer for the anisotropy y direction and scale (w component contains the scale) */ virtual PxVec4* getAnisotropy2DevicePointer() const = 0; /** \brief Gets the device pointer for the anisotropy in z direction. Only available after calling setResultBufferHost or setResultBufferDevice \return The device pointer for the anisotropy z direction and scale (w component contains the scale) */ virtual PxVec4* getAnisotropy3DevicePointer() const = 0; /** \brief Enables or disables the anisotropy generator \param[in] enabled The boolean to set the generator to enabled or disabled */ virtual void setEnabled(bool enabled) = 0; /** \brief Allows to query if the anisotropy generator is enabled \return True if enabled, false otherwise */ virtual bool isEnabled() const = 0; /** \brief Releases the instance and its data */ virtual void release() = 0; /** \brief Destructor */ virtual ~PxAnisotropyGenerator() {} }; /** \brief Default implementation of a particle system callback to trigger anisotropy calculations. A call to fetchResultsParticleSystem() on the PxScene will synchronize the work such that the caller knows that the post solve task completed. */ class PxAnisotropyCallback : public PxParticleSystemCallback { public: /** \brief Initializes the anisotropy callback \param[in] anistropyGenerator The anisotropy generator */ void initialize(PxAnisotropyGenerator* anistropyGenerator) { mAnistropyGenerator = anistropyGenerator; } virtual void onPostSolve(const PxGpuMirroredPointer& gpuParticleSystem, CUstream stream) { if (mAnistropyGenerator) { mAnistropyGenerator->generateAnisotropy(gpuParticleSystem.mDevicePtr, gpuParticleSystem.mHostPtr->mCommonData.mMaxParticles, stream); } } virtual void onBegin(const PxGpuMirroredPointer& /*gpuParticleSystem*/, CUstream /*stream*/) { } virtual void onAdvance(const PxGpuMirroredPointer& /*gpuParticleSystem*/, CUstream /*stream*/) { } private: PxAnisotropyGenerator* mAnistropyGenerator; }; #endif #if !PX_DOXYGEN } // namespace physx #endif /** @} */ #endif