// Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // * Neither the name of NVIDIA CORPORATION nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Copyright (c) 2008-2023 NVIDIA Corporation. All rights reserved. // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. #ifndef PX_MAT33_H #define PX_MAT33_H /** \addtogroup foundation @{ */ #include "foundation/PxVec3.h" #include "foundation/PxQuat.h" #if !PX_DOXYGEN namespace physx { #endif /*! \brief 3x3 matrix class Some clarifications, as there have been much confusion about matrix formats etc in the past. Short: - Matrix have base vectors in columns (vectors are column matrices, 3x1 matrices). - Matrix is physically stored in column major format - Matrices are concaternated from left Long: Given three base vectors a, b and c the matrix is stored as |a.x b.x c.x| |a.y b.y c.y| |a.z b.z c.z| Vectors are treated as columns, so the vector v is |x| |y| |z| And matrices are applied _before_ the vector (pre-multiplication) v' = M*v |x'| |a.x b.x c.x| |x| |a.x*x + b.x*y + c.x*z| |y'| = |a.y b.y c.y| * |y| = |a.y*x + b.y*y + c.y*z| |z'| |a.z b.z c.z| |z| |a.z*x + b.z*y + c.z*z| Physical storage and indexing: To be compatible with popular 3d rendering APIs (read D3d and OpenGL) the physical indexing is |0 3 6| |1 4 7| |2 5 8| index = column*3 + row which in C++ translates to M[column][row] The mathematical indexing is M_row,column and this is what is used for _-notation so _12 is 1st row, second column and operator(row, column)! */ template class PxMat33T { public: //! Default constructor PX_CUDA_CALLABLE PX_FORCE_INLINE PxMat33T() { } //! identity constructor PX_CUDA_CALLABLE PX_INLINE PxMat33T(PxIDENTITY) : column0(Type(1.0), Type(0.0), Type(0.0)), column1(Type(0.0), Type(1.0), Type(0.0)), column2(Type(0.0), Type(0.0), Type(1.0)) { } //! zero constructor PX_CUDA_CALLABLE PX_INLINE PxMat33T(PxZERO) : column0(Type(0.0)), column1(Type(0.0)), column2(Type(0.0)) { } //! Construct from three base vectors PX_CUDA_CALLABLE PxMat33T(const PxVec3T& col0, const PxVec3T& col1, const PxVec3T& col2) : column0(col0), column1(col1), column2(col2) { } //! constructor from a scalar, which generates a multiple of the identity matrix explicit PX_CUDA_CALLABLE PX_INLINE PxMat33T(Type r) : column0(r, Type(0.0), Type(0.0)), column1(Type(0.0), r, Type(0.0)), column2(Type(0.0), Type(0.0), r) { } //! Construct from Type[9] explicit PX_CUDA_CALLABLE PX_INLINE PxMat33T(Type values[]) : column0(values[0], values[1], values[2]), column1(values[3], values[4], values[5]), column2(values[6], values[7], values[8]) { } //! Construct from a quaternion explicit PX_CUDA_CALLABLE PX_FORCE_INLINE PxMat33T(const PxQuatT& q) { // PT: TODO: PX-566 const Type x = q.x; const Type y = q.y; const Type z = q.z; const Type w = q.w; const Type x2 = x + x; const Type y2 = y + y; const Type z2 = z + z; const Type xx = x2 * x; const Type yy = y2 * y; const Type zz = z2 * z; const Type xy = x2 * y; const Type xz = x2 * z; const Type xw = x2 * w; const Type yz = y2 * z; const Type yw = y2 * w; const Type zw = z2 * w; column0 = PxVec3T(Type(1.0) - yy - zz, xy + zw, xz - yw); column1 = PxVec3T(xy - zw, Type(1.0) - xx - zz, yz + xw); column2 = PxVec3T(xz + yw, yz - xw, Type(1.0) - xx - yy); } //! Copy constructor PX_CUDA_CALLABLE PX_INLINE PxMat33T(const PxMat33T& other) : column0(other.column0), column1(other.column1), column2(other.column2) { } //! Assignment operator PX_CUDA_CALLABLE PX_FORCE_INLINE PxMat33T& operator=(const PxMat33T& other) { column0 = other.column0; column1 = other.column1; column2 = other.column2; return *this; } //! Construct from diagonal, off-diagonals are zero. PX_CUDA_CALLABLE PX_INLINE static const PxMat33T createDiagonal(const PxVec3T& d) { return PxMat33T(PxVec3T(d.x, Type(0.0), Type(0.0)), PxVec3T(Type(0.0), d.y, Type(0.0)), PxVec3T(Type(0.0), Type(0.0), d.z)); } //! Computes the outer product of two vectors PX_CUDA_CALLABLE PX_INLINE static const PxMat33T outer(const PxVec3T& a, const PxVec3T& b) { return PxMat33T(a * b.x, a * b.y, a * b.z); } /** \brief returns true if the two matrices are exactly equal */ PX_CUDA_CALLABLE PX_INLINE bool operator==(const PxMat33T& m) const { return column0 == m.column0 && column1 == m.column1 && column2 == m.column2; } //! Get transposed matrix PX_CUDA_CALLABLE PX_FORCE_INLINE const PxMat33T getTranspose() const { const PxVec3T v0(column0.x, column1.x, column2.x); const PxVec3T v1(column0.y, column1.y, column2.y); const PxVec3T v2(column0.z, column1.z, column2.z); return PxMat33T(v0, v1, v2); } //! Get the real inverse PX_CUDA_CALLABLE PX_INLINE const PxMat33T getInverse() const { const Type det = getDeterminant(); PxMat33T inverse; if(det != Type(0.0)) { const Type invDet = Type(1.0) / det; inverse.column0.x = invDet * (column1.y * column2.z - column2.y * column1.z); inverse.column0.y = invDet * -(column0.y * column2.z - column2.y * column0.z); inverse.column0.z = invDet * (column0.y * column1.z - column0.z * column1.y); inverse.column1.x = invDet * -(column1.x * column2.z - column1.z * column2.x); inverse.column1.y = invDet * (column0.x * column2.z - column0.z * column2.x); inverse.column1.z = invDet * -(column0.x * column1.z - column0.z * column1.x); inverse.column2.x = invDet * (column1.x * column2.y - column1.y * column2.x); inverse.column2.y = invDet * -(column0.x * column2.y - column0.y * column2.x); inverse.column2.z = invDet * (column0.x * column1.y - column1.x * column0.y); return inverse; } else { return PxMat33T(PxIdentity); } } //! Get determinant PX_CUDA_CALLABLE PX_INLINE Type getDeterminant() const { return column0.dot(column1.cross(column2)); } //! Unary minus PX_CUDA_CALLABLE PX_INLINE const PxMat33T operator-() const { return PxMat33T(-column0, -column1, -column2); } //! Add PX_CUDA_CALLABLE PX_INLINE const PxMat33T operator+(const PxMat33T& other) const { return PxMat33T(column0 + other.column0, column1 + other.column1, column2 + other.column2); } //! Subtract PX_CUDA_CALLABLE PX_INLINE const PxMat33T operator-(const PxMat33T& other) const { return PxMat33T(column0 - other.column0, column1 - other.column1, column2 - other.column2); } //! Scalar multiplication PX_CUDA_CALLABLE PX_INLINE const PxMat33T operator*(Type scalar) const { return PxMat33T(column0 * scalar, column1 * scalar, column2 * scalar); } template PX_CUDA_CALLABLE PX_INLINE friend PxMat33T operator*(Type2, const PxMat33T&); //! Matrix vector multiplication (returns 'this->transform(vec)') PX_CUDA_CALLABLE PX_INLINE const PxVec3T operator*(const PxVec3T& vec) const { return transform(vec); } // a = b operators //! Matrix multiplication PX_CUDA_CALLABLE PX_FORCE_INLINE const PxMat33T operator*(const PxMat33T& other) const { // Rows from this columns from other // column0 = transform(other.column0) etc return PxMat33T(transform(other.column0), transform(other.column1), transform(other.column2)); } //! Equals-add PX_CUDA_CALLABLE PX_INLINE PxMat33T& operator+=(const PxMat33T& other) { column0 += other.column0; column1 += other.column1; column2 += other.column2; return *this; } //! Equals-sub PX_CUDA_CALLABLE PX_INLINE PxMat33T& operator-=(const PxMat33T& other) { column0 -= other.column0; column1 -= other.column1; column2 -= other.column2; return *this; } //! Equals scalar multiplication PX_CUDA_CALLABLE PX_INLINE PxMat33T& operator*=(Type scalar) { column0 *= scalar; column1 *= scalar; column2 *= scalar; return *this; } //! Equals matrix multiplication PX_CUDA_CALLABLE PX_INLINE PxMat33T& operator*=(const PxMat33T& other) { *this = *this * other; return *this; } //! Element access, mathematical way! PX_CUDA_CALLABLE PX_FORCE_INLINE Type operator()(PxU32 row, PxU32 col) const { return (*this)[col][row]; } //! Element access, mathematical way! PX_CUDA_CALLABLE PX_FORCE_INLINE Type& operator()(PxU32 row, PxU32 col) { return (*this)[col][row]; } // Transform etc //! Transform vector by matrix, equal to v' = M*v PX_CUDA_CALLABLE PX_FORCE_INLINE const PxVec3T transform(const PxVec3T& other) const { return column0 * other.x + column1 * other.y + column2 * other.z; } //! Transform vector by matrix transpose, v' = M^t*v PX_CUDA_CALLABLE PX_INLINE const PxVec3T transformTranspose(const PxVec3T& other) const { return PxVec3T(column0.dot(other), column1.dot(other), column2.dot(other)); } PX_CUDA_CALLABLE PX_FORCE_INLINE const Type* front() const { return &column0.x; } PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3T& operator[](PxU32 num) { return (&column0)[num]; } PX_CUDA_CALLABLE PX_FORCE_INLINE const PxVec3T& operator[](PxU32 num) const { return (&column0)[num]; } // Data, see above for format! PxVec3T column0, column1, column2; // the three base vectors }; template PX_CUDA_CALLABLE PX_INLINE PxMat33T operator*(Type scalar, const PxMat33T& m) { return PxMat33T(scalar * m.column0, scalar * m.column1, scalar * m.column2); } // implementation from PxQuat.h template PX_CUDA_CALLABLE PX_INLINE PxQuatT::PxQuatT(const PxMat33T& m) { if(m.column2.z < Type(0)) { if(m.column0.x > m.column1.y) { const Type t = Type(1.0) + m.column0.x - m.column1.y - m.column2.z; *this = PxQuatT(t, m.column0.y + m.column1.x, m.column2.x + m.column0.z, m.column1.z - m.column2.y) * (Type(0.5) / PxSqrt(t)); } else { const Type t = Type(1.0) - m.column0.x + m.column1.y - m.column2.z; *this = PxQuatT(m.column0.y + m.column1.x, t, m.column1.z + m.column2.y, m.column2.x - m.column0.z) * (Type(0.5) / PxSqrt(t)); } } else { if(m.column0.x < -m.column1.y) { const Type t = Type(1.0) - m.column0.x - m.column1.y + m.column2.z; *this = PxQuatT(m.column2.x + m.column0.z, m.column1.z + m.column2.y, t, m.column0.y - m.column1.x) * (Type(0.5) / PxSqrt(t)); } else { const Type t = Type(1.0) + m.column0.x + m.column1.y + m.column2.z; *this = PxQuatT(m.column1.z - m.column2.y, m.column2.x - m.column0.z, m.column0.y - m.column1.x, t) * (Type(0.5) / PxSqrt(t)); } } } typedef PxMat33T PxMat33; typedef PxMat33T PxMat33d; /** \brief Sets a rotation matrix around the X axis. \param m [out] output rotation matrix \param angle [in] desired angle */ PX_INLINE void PxSetRotX(PxMat33& m, PxReal angle) { m = PxMat33(PxIdentity); PxReal sin, cos; PxSinCos(angle, sin, cos); m[1][1] = m[2][2] = cos; m[1][2] = sin; m[2][1] = -sin; } /** \brief Sets a rotation matrix around the Y axis. \param m [out] output rotation matrix \param angle [in] desired angle */ PX_INLINE void PxSetRotY(PxMat33& m, PxReal angle) { m = PxMat33(PxIdentity); PxReal sin, cos; PxSinCos(angle, sin, cos); m[0][0] = m[2][2] = cos; m[0][2] = -sin; m[2][0] = sin; } /** \brief Sets a rotation matrix around the Z axis. \param m [out] output rotation matrix \param angle [in] desired angle */ PX_INLINE void PxSetRotZ(PxMat33& m, PxReal angle) { m = PxMat33(PxIdentity); PxReal sin, cos; PxSinCos(angle, sin, cos); m[0][0] = m[1][1] = cos; m[0][1] = sin; m[1][0] = -sin; } /** \brief Returns a rotation quaternion around the X axis. \param angle [in] desired angle \return Quaternion that rotates around the desired axis */ PX_INLINE PxQuat PxGetRotXQuat(float angle) { PxMat33 m; PxSetRotX(m, angle); return PxQuat(m); } /** \brief Returns a rotation quaternion around the Y axis. \param angle [in] desired angle \return Quaternion that rotates around the desired axis */ PX_INLINE PxQuat PxGetRotYQuat(float angle) { PxMat33 m; PxSetRotY(m, angle); return PxQuat(m); } /** \brief Returns a rotation quaternion around the Z axis. \param angle [in] desired angle \return Quaternion that rotates around the desired axis */ PX_INLINE PxQuat PxGetRotZQuat(float angle) { PxMat33 m; PxSetRotZ(m, angle); return PxQuat(m); } #if !PX_DOXYGEN } // namespace physx #endif /** @} */ #endif