// Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // * Neither the name of NVIDIA CORPORATION nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Copyright (c) 2008-2023 NVIDIA Corporation. All rights reserved. // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. #ifndef PX_VEC4_H #define PX_VEC4_H /** \addtogroup foundation @{ */ #include "foundation/PxMath.h" #include "foundation/PxVec3.h" /** \brief 4 Element vector class. This is a 4-dimensional vector class with public data members. */ #if !PX_DOXYGEN namespace physx { #endif template class PxVec4T { public: /** \brief default constructor leaves data uninitialized. */ PX_CUDA_CALLABLE PX_INLINE PxVec4T() { } /** \brief zero constructor. */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec4T(PxZERO) : x(Type(0.0)), y(Type(0.0)), z(Type(0.0)), w(Type(0.0)) { } /** \brief Assigns scalar parameter to all elements. Useful to initialize to zero or one. \param[in] a Value to assign to elements. */ explicit PX_CUDA_CALLABLE PX_INLINE PxVec4T(Type a) : x(a), y(a), z(a), w(a) { } /** \brief Initializes from 3 scalar parameters. \param[in] nx Value to initialize X component. \param[in] ny Value to initialize Y component. \param[in] nz Value to initialize Z component. \param[in] nw Value to initialize W component. */ PX_CUDA_CALLABLE PX_INLINE PxVec4T(Type nx, Type ny, Type nz, Type nw) : x(nx), y(ny), z(nz), w(nw) { } /** \brief Initializes from 3 scalar parameters. \param[in] v Value to initialize the X, Y, and Z components. \param[in] nw Value to initialize W component. */ PX_CUDA_CALLABLE PX_INLINE PxVec4T(const PxVec3T& v, Type nw) : x(v.x), y(v.y), z(v.z), w(nw) { } /** \brief Initializes from an array of scalar parameters. \param[in] v Value to initialize with. */ explicit PX_CUDA_CALLABLE PX_INLINE PxVec4T(const Type v[]) : x(v[0]), y(v[1]), z(v[2]), w(v[3]) { } /** \brief Copy ctor. */ PX_CUDA_CALLABLE PX_INLINE PxVec4T(const PxVec4T& v) : x(v.x), y(v.y), z(v.z), w(v.w) { } // Operators /** \brief Assignment operator */ PX_CUDA_CALLABLE PX_INLINE PxVec4T& operator=(const PxVec4T& p) { x = p.x; y = p.y; z = p.z; w = p.w; return *this; } /** \brief element access */ PX_CUDA_CALLABLE PX_INLINE Type& operator[](unsigned int index) { PX_ASSERT(index <= 3); return reinterpret_cast(this)[index]; } /** \brief element access */ PX_CUDA_CALLABLE PX_INLINE const Type& operator[](unsigned int index) const { PX_ASSERT(index <= 3); return reinterpret_cast(this)[index]; } /** \brief returns true if the two vectors are exactly equal. */ PX_CUDA_CALLABLE PX_INLINE bool operator==(const PxVec4T& v) const { return x == v.x && y == v.y && z == v.z && w == v.w; } /** \brief returns true if the two vectors are not exactly equal. */ PX_CUDA_CALLABLE PX_INLINE bool operator!=(const PxVec4T& v) const { return x != v.x || y != v.y || z != v.z || w != v.w; } /** \brief tests for exact zero vector */ PX_CUDA_CALLABLE PX_INLINE bool isZero() const { return x == Type(0) && y == Type(0) && z == Type(0) && w == Type(0); } /** \brief returns true if all 3 elems of the vector are finite (not NAN or INF, etc.) */ PX_CUDA_CALLABLE PX_INLINE bool isFinite() const { return PxIsFinite(x) && PxIsFinite(y) && PxIsFinite(z) && PxIsFinite(w); } /** \brief is normalized - used by API parameter validation */ PX_CUDA_CALLABLE PX_INLINE bool isNormalized() const { const Type unitTolerance = Type(1e-4); return isFinite() && PxAbs(magnitude() - Type(1.0)) < unitTolerance; } /** \brief returns the squared magnitude Avoids calling PxSqrt()! */ PX_CUDA_CALLABLE PX_INLINE Type magnitudeSquared() const { return x * x + y * y + z * z + w * w; } /** \brief returns the magnitude */ PX_CUDA_CALLABLE PX_INLINE Type magnitude() const { return PxSqrt(magnitudeSquared()); } /** \brief negation */ PX_CUDA_CALLABLE PX_INLINE PxVec4T operator-() const { return PxVec4T(-x, -y, -z, -w); } /** \brief vector addition */ PX_CUDA_CALLABLE PX_INLINE PxVec4T operator+(const PxVec4T& v) const { return PxVec4T(x + v.x, y + v.y, z + v.z, w + v.w); } /** \brief vector difference */ PX_CUDA_CALLABLE PX_INLINE PxVec4T operator-(const PxVec4T& v) const { return PxVec4T(x - v.x, y - v.y, z - v.z, w - v.w); } /** \brief scalar post-multiplication */ PX_CUDA_CALLABLE PX_INLINE PxVec4T operator*(Type f) const { return PxVec4T(x * f, y * f, z * f, w * f); } /** \brief scalar division */ PX_CUDA_CALLABLE PX_INLINE PxVec4T operator/(Type f) const { f = Type(1.0) / f; return PxVec4T(x * f, y * f, z * f, w * f); } /** \brief vector addition */ PX_CUDA_CALLABLE PX_INLINE PxVec4T& operator+=(const PxVec4T& v) { x += v.x; y += v.y; z += v.z; w += v.w; return *this; } /** \brief vector difference */ PX_CUDA_CALLABLE PX_INLINE PxVec4T& operator-=(const PxVec4T& v) { x -= v.x; y -= v.y; z -= v.z; w -= v.w; return *this; } /** \brief scalar multiplication */ PX_CUDA_CALLABLE PX_INLINE PxVec4T& operator*=(Type f) { x *= f; y *= f; z *= f; w *= f; return *this; } /** \brief scalar division */ PX_CUDA_CALLABLE PX_INLINE PxVec4T& operator/=(Type f) { f = Type(1.0) / f; x *= f; y *= f; z *= f; w *= f; return *this; } /** \brief returns the scalar product of this and other. */ PX_CUDA_CALLABLE PX_INLINE Type dot(const PxVec4T& v) const { return x * v.x + y * v.y + z * v.z + w * v.w; } /** returns a unit vector */ PX_CUDA_CALLABLE PX_INLINE PxVec4T getNormalized() const { const Type m = magnitudeSquared(); return m > Type(0.0) ? *this * PxRecipSqrt(m) : PxVec4T(Type(0)); } /** \brief normalizes the vector in place */ PX_CUDA_CALLABLE PX_INLINE Type normalize() { const Type m = magnitude(); if(m > Type(0.0)) *this /= m; return m; } /** \brief a[i] * b[i], for all i. */ PX_CUDA_CALLABLE PX_INLINE PxVec4T multiply(const PxVec4T& a) const { return PxVec4T(x * a.x, y * a.y, z * a.z, w * a.w); } /** \brief element-wise minimum */ PX_CUDA_CALLABLE PX_INLINE PxVec4T minimum(const PxVec4T& v) const { return PxVec4(PxMin(x, v.x), PxMin(y, v.y), PxMin(z, v.z), PxMin(w, v.w)); } /** \brief element-wise maximum */ PX_CUDA_CALLABLE PX_INLINE PxVec4T maximum(const PxVec4T& v) const { return PxVec4T(PxMax(x, v.x), PxMax(y, v.y), PxMax(z, v.z), PxMax(w, v.w)); } PX_CUDA_CALLABLE PX_INLINE PxVec3T getXYZ() const { return PxVec3T(x, y, z); } Type x, y, z, w; }; template PX_CUDA_CALLABLE static PX_INLINE PxVec4T operator*(Type f, const PxVec4T& v) { return PxVec4T(f * v.x, f * v.y, f * v.z, f * v.w); } typedef PxVec4T PxVec4; typedef PxVec4T PxVec4d; #if !PX_DOXYGEN } // namespace physx #endif /** @} */ #endif