// Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // * Neither the name of NVIDIA CORPORATION nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Copyright (c) 2008-2023 NVIDIA Corporation. All rights reserved. // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. #ifndef PX_MATH_H #define PX_MATH_H /** \addtogroup foundation @{ */ #include "foundation/PxPreprocessor.h" #if PX_VC #pragma warning(push) #pragma warning(disable : 4985) // 'symbol name': attributes not present on previous declaration #endif #include #if PX_VC #pragma warning(pop) #endif #if (PX_LINUX_FAMILY && !PX_ARM_FAMILY) // Force linking against nothing newer than glibc v2.17 to remain compatible with platforms with older glibc versions __asm__(".symver expf,expf@GLIBC_2.2.5"); __asm__(".symver powf,powf@GLIBC_2.2.5"); #endif #include #include "foundation/PxMathIntrinsics.h" #include "foundation/PxAssert.h" #if !PX_DOXYGEN namespace physx { #endif // constants static const float PxPi = float(3.141592653589793); static const float PxHalfPi = float(1.57079632679489661923); static const float PxTwoPi = float(6.28318530717958647692); static const float PxInvPi = float(0.31830988618379067154); static const float PxInvTwoPi = float(0.15915494309189533577); static const float PxPiDivTwo = float(1.57079632679489661923); static const float PxPiDivFour = float(0.78539816339744830962); static const float PxSqrt2 = float(1.4142135623730951); static const float PxInvSqrt2 = float(0.7071067811865476); /** \brief The return value is the greater of the two specified values. */ template PX_CUDA_CALLABLE PX_FORCE_INLINE T PxMax(T a, T b) { return a < b ? b : a; } //! overload for float to use fsel on xbox template <> PX_CUDA_CALLABLE PX_FORCE_INLINE float PxMax(float a, float b) { return intrinsics::selectMax(a, b); } /** \brief The return value is the lesser of the two specified values. */ template PX_CUDA_CALLABLE PX_FORCE_INLINE T PxMin(T a, T b) { return a < b ? a : b; } template <> //! overload for float to use fsel on xbox PX_CUDA_CALLABLE PX_FORCE_INLINE float PxMin(float a, float b) { return intrinsics::selectMin(a, b); } /* Many of these are just implemented as PX_CUDA_CALLABLE PX_FORCE_INLINE calls to the C lib right now, but later we could replace some of them with some approximations or more clever stuff. */ /** \brief abs returns the absolute value of its argument. */ PX_CUDA_CALLABLE PX_FORCE_INLINE float PxAbs(float a) { return intrinsics::abs(a); } PX_CUDA_CALLABLE PX_FORCE_INLINE bool PxEquals(float a, float b, float eps) { return (PxAbs(a - b) < eps); } /** \brief abs returns the absolute value of its argument. */ PX_CUDA_CALLABLE PX_FORCE_INLINE double PxAbs(double a) { return ::fabs(a); } /** \brief abs returns the absolute value of its argument. */ PX_CUDA_CALLABLE PX_FORCE_INLINE int32_t PxAbs(int32_t a) { return ::abs(a); } /** \brief Clamps v to the range [hi,lo] */ template PX_CUDA_CALLABLE PX_FORCE_INLINE T PxClamp(T v, T lo, T hi) { PX_ASSERT(lo <= hi); return PxMin(hi, PxMax(lo, v)); } //! \brief Square root. PX_CUDA_CALLABLE PX_FORCE_INLINE float PxSqrt(float a) { return intrinsics::sqrt(a); } //! \brief Square root. PX_CUDA_CALLABLE PX_FORCE_INLINE double PxSqrt(double a) { return ::sqrt(a); } //! \brief reciprocal square root. PX_CUDA_CALLABLE PX_FORCE_INLINE float PxRecipSqrt(float a) { return intrinsics::recipSqrt(a); } //! \brief reciprocal square root. PX_CUDA_CALLABLE PX_FORCE_INLINE double PxRecipSqrt(double a) { return 1 / ::sqrt(a); } //! \brief square of the argument PX_CUDA_CALLABLE PX_FORCE_INLINE PxF32 PxSqr(const PxF32 a) { return a * a; } //! trigonometry -- all angles are in radians. //! \brief Sine of an angle ( Unit: Radians ) PX_CUDA_CALLABLE PX_FORCE_INLINE float PxSin(float a) { return intrinsics::sin(a); } //! \brief Sine of an angle ( Unit: Radians ) PX_CUDA_CALLABLE PX_FORCE_INLINE double PxSin(double a) { return ::sin(a); } //! \brief Cosine of an angle (Unit: Radians) PX_CUDA_CALLABLE PX_FORCE_INLINE float PxCos(float a) { return intrinsics::cos(a); } //! \brief Cosine of an angle (Unit: Radians) PX_CUDA_CALLABLE PX_FORCE_INLINE double PxCos(double a) { return ::cos(a); } //! \brief compute sine and cosine at the same time PX_CUDA_CALLABLE PX_FORCE_INLINE void PxSinCos(const PxF32 a, PxF32& sin, PxF32& cos) { #if defined(__CUDACC__) && __CUDA_ARCH__ >= 350 __sincosf(a, &sin, &cos); #else sin = PxSin(a); cos = PxCos(a); #endif } //! \brief compute sine and cosine at the same time PX_CUDA_CALLABLE PX_FORCE_INLINE void PxSinCos(const double a, double& sin, double& cos) { sin = PxSin(a); cos = PxCos(a); } /** \brief Tangent of an angle. Unit: Radians */ PX_CUDA_CALLABLE PX_FORCE_INLINE float PxTan(float a) { return ::tanf(a); } /** \brief Tangent of an angle. Unit: Radians */ PX_CUDA_CALLABLE PX_FORCE_INLINE double PxTan(double a) { return ::tan(a); } /** \brief Arcsine. Returns angle between -PI/2 and PI/2 in radians Unit: Radians */ PX_CUDA_CALLABLE PX_FORCE_INLINE float PxAsin(float f) { return ::asinf(PxClamp(f, -1.0f, 1.0f)); } /** \brief Arcsine. Returns angle between -PI/2 and PI/2 in radians Unit: Radians */ PX_CUDA_CALLABLE PX_FORCE_INLINE double PxAsin(double f) { return ::asin(PxClamp(f, -1.0, 1.0)); } /** \brief Arccosine. Returns angle between 0 and PI in radians Unit: Radians */ PX_CUDA_CALLABLE PX_FORCE_INLINE float PxAcos(float f) { return ::acosf(PxClamp(f, -1.0f, 1.0f)); } /** \brief Arccosine. Returns angle between 0 and PI in radians Unit: Radians */ PX_CUDA_CALLABLE PX_FORCE_INLINE double PxAcos(double f) { return ::acos(PxClamp(f, -1.0, 1.0)); } /** \brief ArcTangent. Returns angle between -PI/2 and PI/2 in radians Unit: Radians */ PX_CUDA_CALLABLE PX_FORCE_INLINE float PxAtan(float a) { return ::atanf(a); } /** \brief ArcTangent. Returns angle between -PI/2 and PI/2 in radians Unit: Radians */ PX_CUDA_CALLABLE PX_FORCE_INLINE double PxAtan(double a) { return ::atan(a); } /** \brief Arctangent of (x/y) with correct sign. Returns angle between -PI and PI in radians Unit: Radians */ PX_CUDA_CALLABLE PX_FORCE_INLINE float PxAtan2(float x, float y) { return ::atan2f(x, y); } /** \brief Arctangent of (x/y) with correct sign. Returns angle between -PI and PI in radians Unit: Radians */ PX_CUDA_CALLABLE PX_FORCE_INLINE double PxAtan2(double x, double y) { return ::atan2(x, y); } /** \brief Converts degrees to radians. */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxF32 PxDegToRad(const PxF32 a) { return 0.01745329251994329547f * a; } //! \brief returns true if the passed number is a finite floating point number as opposed to INF, NAN, etc. PX_CUDA_CALLABLE PX_FORCE_INLINE bool PxIsFinite(float f) { return intrinsics::isFinite(f); } //! \brief returns true if the passed number is a finite floating point number as opposed to INF, NAN, etc. PX_CUDA_CALLABLE PX_FORCE_INLINE bool PxIsFinite(double f) { return intrinsics::isFinite(f); } PX_CUDA_CALLABLE PX_FORCE_INLINE float PxFloor(float a) { return ::floorf(a); } PX_CUDA_CALLABLE PX_FORCE_INLINE float PxExp(float a) { return ::expf(a); } PX_CUDA_CALLABLE PX_FORCE_INLINE float PxCeil(float a) { return ::ceilf(a); } PX_CUDA_CALLABLE PX_FORCE_INLINE float PxSign(float a) { return physx::intrinsics::sign(a); } PX_CUDA_CALLABLE PX_FORCE_INLINE float PxSign2(float a, float eps = FLT_EPSILON) { return (a < -eps) ? -1.0f : (a > eps) ? 1.0f : 0.0f; } PX_CUDA_CALLABLE PX_FORCE_INLINE float PxPow(float x, float y) { return ::powf(x, y); } PX_CUDA_CALLABLE PX_FORCE_INLINE float PxLog(float x) { return ::logf(x); } #if !PX_DOXYGEN } // namespace physx #endif /** @} */ #endif