// Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // * Neither the name of NVIDIA CORPORATION nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Copyright (c) 2008-2023 NVIDIA Corporation. All rights reserved. // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. #ifndef PX_QUAT_H #define PX_QUAT_H /** \addtogroup foundation @{ */ #include "foundation/PxVec3.h" #if !PX_DOXYGEN namespace physx { #endif /** \brief This is a quaternion class. For more information on quaternion mathematics consult a mathematics source on complex numbers. */ template class PxQuatT { public: /** \brief Default constructor, does not do any initialization. */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuatT() { } //! identity constructor PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuatT(PxIDENTITY) : x(Type(0.0)), y(Type(0.0)), z(Type(0.0)), w(Type(1.0)) { } /** \brief Constructor from a scalar: sets the real part w to the scalar value, and the imaginary parts (x,y,z) to zero */ explicit PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuatT(Type r) : x(Type(0.0)), y(Type(0.0)), z(Type(0.0)), w(r) { } /** \brief Constructor. Take note of the order of the elements! */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuatT(Type nx, Type ny, Type nz, Type nw) : x(nx), y(ny), z(nz), w(nw) { } /** \brief Creates from angle-axis representation. Axis must be normalized! Angle is in radians! Unit: Radians */ PX_CUDA_CALLABLE PX_INLINE PxQuatT(Type angleRadians, const PxVec3T& unitAxis) { PX_ASSERT(PxAbs(Type(1.0) - unitAxis.magnitude()) < Type(1e-3)); const Type a = angleRadians * Type(0.5); Type s; PxSinCos(a, s, w); x = unitAxis.x * s; y = unitAxis.y * s; z = unitAxis.z * s; } /** \brief Copy ctor. */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuatT(const PxQuatT& v) : x(v.x), y(v.y), z(v.z), w(v.w) { } /** \brief Creates from orientation matrix. \param[in] m Rotation matrix to extract quaternion from. */ PX_CUDA_CALLABLE PX_INLINE explicit PxQuatT(const PxMat33T& m); /* defined in PxMat33.h */ /** \brief returns true if quat is identity */ PX_CUDA_CALLABLE PX_FORCE_INLINE bool isIdentity() const { return x==Type(0.0) && y==Type(0.0) && z==Type(0.0) && w==Type(1.0); } /** \brief returns true if all elements are finite (not NAN or INF, etc.) */ PX_CUDA_CALLABLE bool isFinite() const { return PxIsFinite(x) && PxIsFinite(y) && PxIsFinite(z) && PxIsFinite(w); } /** \brief returns true if finite and magnitude is close to unit */ PX_CUDA_CALLABLE bool isUnit() const { const Type unitTolerance = Type(1e-3); return isFinite() && PxAbs(magnitude() - Type(1.0)) < unitTolerance; } /** \brief returns true if finite and magnitude is reasonably close to unit to allow for some accumulation of error vs isValid */ PX_CUDA_CALLABLE bool isSane() const { const Type unitTolerance = Type(1e-2); return isFinite() && PxAbs(magnitude() - Type(1.0)) < unitTolerance; } /** \brief returns true if the two quaternions are exactly equal */ PX_CUDA_CALLABLE PX_FORCE_INLINE bool operator==(const PxQuatT& q) const { return x == q.x && y == q.y && z == q.z && w == q.w; } /** \brief converts this quaternion to angle-axis representation */ PX_CUDA_CALLABLE PX_INLINE void toRadiansAndUnitAxis(Type& angle, PxVec3T& axis) const { const Type quatEpsilon = Type(1.0e-8); const Type s2 = x * x + y * y + z * z; if(s2 < quatEpsilon * quatEpsilon) // can't extract a sensible axis { angle = Type(0.0); axis = PxVec3T(Type(1.0), Type(0.0), Type(0.0)); } else { const Type s = PxRecipSqrt(s2); axis = PxVec3T(x, y, z) * s; angle = PxAbs(w) < quatEpsilon ? Type(PxPi) : PxAtan2(s2 * s, w) * Type(2.0); } } /** \brief Gets the angle between this quat and the identity quaternion. Unit: Radians */ PX_CUDA_CALLABLE PX_FORCE_INLINE Type getAngle() const { return PxAcos(w) * Type(2.0); } /** \brief Gets the angle between this quat and the argument Unit: Radians */ PX_CUDA_CALLABLE PX_FORCE_INLINE Type getAngle(const PxQuatT& q) const { return PxAcos(dot(q)) * Type(2.0); } /** \brief This is the squared 4D vector length, should be 1 for unit quaternions. */ PX_CUDA_CALLABLE PX_FORCE_INLINE Type magnitudeSquared() const { return x * x + y * y + z * z + w * w; } /** \brief returns the scalar product of this and other. */ PX_CUDA_CALLABLE PX_FORCE_INLINE Type dot(const PxQuatT& v) const { return x * v.x + y * v.y + z * v.z + w * v.w; } PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuatT getNormalized() const { const Type s = Type(1.0) / magnitude(); return PxQuatT(x * s, y * s, z * s, w * s); } PX_CUDA_CALLABLE PX_FORCE_INLINE Type magnitude() const { return PxSqrt(magnitudeSquared()); } // modifiers: /** \brief maps to the closest unit quaternion. */ PX_CUDA_CALLABLE PX_FORCE_INLINE Type normalize() // convert this PxQuatT to a unit quaternion { const Type mag = magnitude(); if(mag != Type(0.0)) { const Type imag = Type(1.0) / mag; x *= imag; y *= imag; z *= imag; w *= imag; } return mag; } /* \brief returns the conjugate. \note for unit quaternions, this is the inverse. */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuatT getConjugate() const { return PxQuatT(-x, -y, -z, w); } /* \brief returns imaginary part. */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3T getImaginaryPart() const { return PxVec3T(x, y, z); } /** brief computes rotation of x-axis */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3T getBasisVector0() const { const Type x2 = x * Type(2.0); const Type w2 = w * Type(2.0); return PxVec3T((w * w2) - Type(1.0) + x * x2, (z * w2) + y * x2, (-y * w2) + z * x2); } /** brief computes rotation of y-axis */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3T getBasisVector1() const { const Type y2 = y * Type(2.0); const Type w2 = w * Type(2.0); return PxVec3T((-z * w2) + x * y2, (w * w2) - Type(1.0) + y * y2, (x * w2) + z * y2); } /** brief computes rotation of z-axis */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3T getBasisVector2() const { const Type z2 = z * Type(2.0); const Type w2 = w * Type(2.0); return PxVec3T((y * w2) + x * z2, (-x * w2) + y * z2, (w * w2) - Type(1.0) + z * z2); } /** rotates passed vec by this (assumed unitary) */ PX_CUDA_CALLABLE PX_FORCE_INLINE const PxVec3T rotate(const PxVec3T& v) const { const Type vx = Type(2.0) * v.x; const Type vy = Type(2.0) * v.y; const Type vz = Type(2.0) * v.z; const Type w2 = w * w - 0.5f; const Type dot2 = (x * vx + y * vy + z * vz); return PxVec3T((vx * w2 + (y * vz - z * vy) * w + x * dot2), (vy * w2 + (z * vx - x * vz) * w + y * dot2), (vz * w2 + (x * vy - y * vx) * w + z * dot2)); } /** inverse rotates passed vec by this (assumed unitary) */ PX_CUDA_CALLABLE PX_FORCE_INLINE const PxVec3T rotateInv(const PxVec3T& v) const { const Type vx = Type(2.0) * v.x; const Type vy = Type(2.0) * v.y; const Type vz = Type(2.0) * v.z; const Type w2 = w * w - 0.5f; const Type dot2 = (x * vx + y * vy + z * vz); return PxVec3T((vx * w2 - (y * vz - z * vy) * w + x * dot2), (vy * w2 - (z * vx - x * vz) * w + y * dot2), (vz * w2 - (x * vy - y * vx) * w + z * dot2)); } /** \brief Assignment operator */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuatT& operator=(const PxQuatT& p) { x = p.x; y = p.y; z = p.z; w = p.w; return *this; } PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuatT& operator*=(const PxQuatT& q) { const Type tx = w * q.x + q.w * x + y * q.z - q.y * z; const Type ty = w * q.y + q.w * y + z * q.x - q.z * x; const Type tz = w * q.z + q.w * z + x * q.y - q.x * y; w = w * q.w - q.x * x - y * q.y - q.z * z; x = tx; y = ty; z = tz; return *this; } PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuatT& operator+=(const PxQuatT& q) { x += q.x; y += q.y; z += q.z; w += q.w; return *this; } PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuatT& operator-=(const PxQuatT& q) { x -= q.x; y -= q.y; z -= q.z; w -= q.w; return *this; } PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuatT& operator*=(const Type s) { x *= s; y *= s; z *= s; w *= s; return *this; } /** quaternion multiplication */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuatT operator*(const PxQuatT& q) const { return PxQuatT(w * q.x + q.w * x + y * q.z - q.y * z, w * q.y + q.w * y + z * q.x - q.z * x, w * q.z + q.w * z + x * q.y - q.x * y, w * q.w - x * q.x - y * q.y - z * q.z); } /** quaternion addition */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuatT operator+(const PxQuatT& q) const { return PxQuatT(x + q.x, y + q.y, z + q.z, w + q.w); } /** quaternion subtraction */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuatT operator-() const { return PxQuatT(-x, -y, -z, -w); } PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuatT operator-(const PxQuatT& q) const { return PxQuatT(x - q.x, y - q.y, z - q.z, w - q.w); } PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuatT operator*(Type r) const { return PxQuatT(x * r, y * r, z * r, w * r); } /** the quaternion elements */ Type x, y, z, w; }; typedef PxQuatT PxQuat; typedef PxQuatT PxQuatd; #if !PX_DOXYGEN } // namespace physx #endif /** @} */ #endif