// Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // * Neither the name of NVIDIA CORPORATION nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Copyright (c) 2008-2023 NVIDIA Corporation. All rights reserved. // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. #ifndef PX_STRIDE_ITERATOR_H #define PX_STRIDE_ITERATOR_H #include "foundation/Px.h" #include "foundation/PxAssert.h" /** \addtogroup foundation @{ */ #if !PX_DOXYGEN namespace physx { #endif /** \brief Iterator class for iterating over arrays of data that may be interleaved with other data. This class is used for iterating over arrays of elements that may have a larger element to element offset, called the stride, than the size of the element itself (non-contiguous). The template parameter T denotes the type of the element accessed. The stride itself is stored as a member field so multiple instances of a PxStrideIterator class can have different strides. This is useful for cases were the stride depends on runtime configuration. The stride iterator can be used for index based access, e.g.: \code PxStrideIterator strideArray(...); for (unsigned i = 0; i < 10; ++i) { PxVec3& vec = strideArray[i]; ... } \endcode or iteration by increment, e.g.: \code PxStrideIterator strideBegin(...); PxStrideIterator strideEnd(strideBegin + 10); for (PxStrideIterator it = strideBegin; it < strideEnd; ++it) { PxVec3& vec = *it; ... } \endcode Two special cases: - A stride of sizeof(T) represents a regular c array of type T. - A stride of 0 can be used to describe re-occurrence of the same element multiple times. */ template class PxStrideIterator { #if !PX_DOXYGEN template struct StripConst { typedef X Type; }; template struct StripConst { typedef X Type; }; #endif public: /** \brief Constructor. Optionally takes a pointer to an element and a stride. \param[in] ptr pointer to element, defaults to NULL. \param[in] stride stride for accessing consecutive elements, defaults to the size of one element. */ explicit PX_INLINE PxStrideIterator(T* ptr = NULL, PxU32 stride = sizeof(T)) : mPtr(ptr), mStride(stride) { PX_ASSERT(mStride == 0 || sizeof(T) <= mStride); } /** \brief Copy constructor. \param[in] strideIterator PxStrideIterator to be copied. */ PX_INLINE PxStrideIterator(const PxStrideIterator::Type>& strideIterator) : mPtr(strideIterator.ptr()), mStride(strideIterator.stride()) { PX_ASSERT(mStride == 0 || sizeof(T) <= mStride); } /** \brief Get pointer to element. */ PX_INLINE T* ptr() const { return mPtr; } /** \brief Get stride. */ PX_INLINE PxU32 stride() const { return mStride; } /** \brief Indirection operator. */ PX_INLINE T& operator*() const { return *mPtr; } /** \brief Dereferencing operator. */ PX_INLINE T* operator->() const { return mPtr; } /** \brief Indexing operator. */ PX_INLINE T& operator[](unsigned int i) const { return *byteAdd(mPtr, i * stride()); } /** \brief Pre-increment operator. */ PX_INLINE PxStrideIterator& operator++() { mPtr = byteAdd(mPtr, stride()); return *this; } /** \brief Post-increment operator. */ PX_INLINE PxStrideIterator operator++(int) { PxStrideIterator tmp = *this; mPtr = byteAdd(mPtr, stride()); return tmp; } /** \brief Pre-decrement operator. */ PX_INLINE PxStrideIterator& operator--() { mPtr = byteSub(mPtr, stride()); return *this; } /** \brief Post-decrement operator. */ PX_INLINE PxStrideIterator operator--(int) { PxStrideIterator tmp = *this; mPtr = byteSub(mPtr, stride()); return tmp; } /** \brief Addition operator. */ PX_INLINE PxStrideIterator operator+(unsigned int i) const { return PxStrideIterator(byteAdd(mPtr, i * stride()), stride()); } /** \brief Subtraction operator. */ PX_INLINE PxStrideIterator operator-(unsigned int i) const { return PxStrideIterator(byteSub(mPtr, i * stride()), stride()); } /** \brief Addition compound assignment operator. */ PX_INLINE PxStrideIterator& operator+=(unsigned int i) { mPtr = byteAdd(mPtr, i * stride()); return *this; } /** \brief Subtraction compound assignment operator. */ PX_INLINE PxStrideIterator& operator-=(unsigned int i) { mPtr = byteSub(mPtr, i * stride()); return *this; } /** \brief Iterator difference. */ PX_INLINE int operator-(const PxStrideIterator& other) const { PX_ASSERT(isCompatible(other)); int byteDiff = static_cast(reinterpret_cast(mPtr) - reinterpret_cast(other.mPtr)); return byteDiff / static_cast(stride()); } /** \brief Equality operator. */ PX_INLINE bool operator==(const PxStrideIterator& other) const { PX_ASSERT(isCompatible(other)); return mPtr == other.mPtr; } /** \brief Inequality operator. */ PX_INLINE bool operator!=(const PxStrideIterator& other) const { PX_ASSERT(isCompatible(other)); return mPtr != other.mPtr; } /** \brief Less than operator. */ PX_INLINE bool operator<(const PxStrideIterator& other) const { PX_ASSERT(isCompatible(other)); return mPtr < other.mPtr; } /** \brief Greater than operator. */ PX_INLINE bool operator>(const PxStrideIterator& other) const { PX_ASSERT(isCompatible(other)); return mPtr > other.mPtr; } /** \brief Less or equal than operator. */ PX_INLINE bool operator<=(const PxStrideIterator& other) const { PX_ASSERT(isCompatible(other)); return mPtr <= other.mPtr; } /** \brief Greater or equal than operator. */ PX_INLINE bool operator>=(const PxStrideIterator& other) const { PX_ASSERT(isCompatible(other)); return mPtr >= other.mPtr; } private: PX_INLINE static T* byteAdd(T* ptr, PxU32 bytes) { return const_cast(reinterpret_cast(reinterpret_cast(ptr) + bytes)); } PX_INLINE static T* byteSub(T* ptr, PxU32 bytes) { return const_cast(reinterpret_cast(reinterpret_cast(ptr) - bytes)); } PX_INLINE bool isCompatible(const PxStrideIterator& other) const { int byteDiff = static_cast(reinterpret_cast(mPtr) - reinterpret_cast(other.mPtr)); return (stride() == other.stride()) && (abs(byteDiff) % stride() == 0); } T* mPtr; PxU32 mStride; }; /** \brief Addition operator. */ template PX_INLINE PxStrideIterator operator+(int i, PxStrideIterator it) { it += i; return it; } /** \brief Stride iterator factory function which infers the iterator type. */ template PX_INLINE PxStrideIterator PxMakeIterator(T* ptr, PxU32 stride = sizeof(T)) { return PxStrideIterator(ptr, stride); } /** \brief Stride iterator factory function which infers the iterator type. */ template PX_INLINE PxStrideIterator PxMakeIterator(const T* ptr, PxU32 stride = sizeof(T)) { return PxStrideIterator(ptr, stride); } #if !PX_DOXYGEN } // namespace physx #endif /** @} */ #endif