// Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // * Neither the name of NVIDIA CORPORATION nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Copyright (c) 2008-2023 NVIDIA Corporation. All rights reserved. // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. #ifndef PX_TRANSFORM_H #define PX_TRANSFORM_H /** \addtogroup foundation @{ */ #include "foundation/PxQuat.h" #if !PX_DOXYGEN namespace physx { #endif /*! \brief class representing a rigid euclidean transform as a quaternion and a vector */ template class PxTransformT { public: PxQuatT q; PxVec3T p; PX_CUDA_CALLABLE PX_FORCE_INLINE PxTransformT() { } PX_CUDA_CALLABLE PX_FORCE_INLINE explicit PxTransformT(PxIDENTITY) : q(PxIdentity), p(PxZero) { } PX_CUDA_CALLABLE PX_FORCE_INLINE explicit PxTransformT(const PxVec3T& position) : q(PxIdentity), p(position) { } PX_CUDA_CALLABLE PX_FORCE_INLINE explicit PxTransformT(const PxQuatT& orientation) : q(orientation), p(Type(0)) { PX_ASSERT(orientation.isSane()); } PX_CUDA_CALLABLE PX_FORCE_INLINE PxTransformT(Type x, Type y, Type z, PxQuatT aQ = PxQuatT(PxIdentity)) : q(aQ), p(x, y, z) { } PX_CUDA_CALLABLE PX_FORCE_INLINE PxTransformT(const PxVec3T& p0, const PxQuatT& q0) : q(q0), p(p0) { PX_ASSERT(q0.isSane()); } PX_CUDA_CALLABLE PX_FORCE_INLINE explicit PxTransformT(const PxMat44T& m); // defined in PxMat44.h PX_CUDA_CALLABLE PX_FORCE_INLINE PxTransformT(const PxTransformT& other) { p = other.p; q = other.q; } PX_CUDA_CALLABLE PX_FORCE_INLINE void operator=(const PxTransformT& other) { p = other.p; q = other.q; } /** \brief returns true if the two transforms are exactly equal */ PX_CUDA_CALLABLE PX_INLINE bool operator==(const PxTransformT& t) const { return p == t.p && q == t.q; } PX_CUDA_CALLABLE PX_FORCE_INLINE PxTransformT operator*(const PxTransformT& x) const { PX_ASSERT(x.isSane()); return transform(x); } //! Equals matrix multiplication PX_CUDA_CALLABLE PX_INLINE PxTransformT& operator*=(const PxTransformT& other) { *this = *this * other; return *this; } PX_CUDA_CALLABLE PX_FORCE_INLINE PxTransformT getInverse() const { PX_ASSERT(isFinite()); return PxTransformT(q.rotateInv(-p), q.getConjugate()); } /** \brief return a normalized transform (i.e. one in which the quaternion has unit magnitude) */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxTransformT getNormalized() const { return PxTransformT(p, q.getNormalized()); } PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3T transform(const PxVec3T& input) const { PX_ASSERT(isFinite()); return q.rotate(input) + p; } PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3T transformInv(const PxVec3T& input) const { PX_ASSERT(isFinite()); return q.rotateInv(input - p); } PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3T rotate(const PxVec3T& input) const { PX_ASSERT(isFinite()); return q.rotate(input); } PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3T rotateInv(const PxVec3T& input) const { PX_ASSERT(isFinite()); return q.rotateInv(input); } //! Transform transform to parent (returns compound transform: first src, then *this) PX_CUDA_CALLABLE PX_FORCE_INLINE PxTransformT transform(const PxTransformT& src) const { PX_ASSERT(src.isSane()); PX_ASSERT(isSane()); // src = [srct, srcr] -> [r*srct + t, r*srcr] return PxTransformT(q.rotate(src.p) + p, q * src.q); } //! Transform transform from parent (returns compound transform: first src, then this->inverse) PX_CUDA_CALLABLE PX_FORCE_INLINE PxTransformT transformInv(const PxTransformT& src) const { PX_ASSERT(src.isSane()); PX_ASSERT(isFinite()); // src = [srct, srcr] -> [r^-1*(srct-t), r^-1*srcr] const PxQuatT qinv = q.getConjugate(); return PxTransformT(qinv.rotate(src.p - p), qinv * src.q); } /** \brief returns true if finite and q is a unit quaternion */ PX_CUDA_CALLABLE bool isValid() const { return p.isFinite() && q.isFinite() && q.isUnit(); } /** \brief returns true if finite and quat magnitude is reasonably close to unit to allow for some accumulation of error vs isValid */ PX_CUDA_CALLABLE bool isSane() const { return isFinite() && q.isSane(); } /** \brief returns true if all elems are finite (not NAN or INF, etc.) */ PX_CUDA_CALLABLE PX_FORCE_INLINE bool isFinite() const { return p.isFinite() && q.isFinite(); } }; typedef PxTransformT PxTransform; typedef PxTransformT PxTransformd; /*! \brief A generic padded & aligned transform class. This can be used for safe faster loads & stores, and faster address computations (the default PxTransformT often generating imuls for this otherwise). Padding bytes can be reused to store useful data if needed. */ struct PX_ALIGN_PREFIX(16) PxTransformPadded : PxTransform { PX_FORCE_INLINE PxTransformPadded() { } PX_FORCE_INLINE PxTransformPadded(const PxTransformPadded& other) : PxTransform(other) { } PX_FORCE_INLINE explicit PxTransformPadded(const PxTransform& other) : PxTransform(other) { } PX_FORCE_INLINE explicit PxTransformPadded(PxIDENTITY) : PxTransform(PxIdentity) { } PX_FORCE_INLINE explicit PxTransformPadded(const PxVec3& position) : PxTransform(position) { } PX_FORCE_INLINE explicit PxTransformPadded(const PxQuat& orientation) : PxTransform(orientation) { } PX_FORCE_INLINE PxTransformPadded(const PxVec3& p0, const PxQuat& q0) : PxTransform(p0, q0) { } PX_FORCE_INLINE void operator=(const PxTransformPadded& other) { p = other.p; q = other.q; } PX_FORCE_INLINE void operator=(const PxTransform& other) { p = other.p; q = other.q; } PxU32 padding; } PX_ALIGN_SUFFIX(16); PX_COMPILE_TIME_ASSERT(sizeof(PxTransformPadded)==32); typedef PxTransformPadded PxTransform32; #if !PX_DOXYGEN } // namespace physx #endif /** @} */ #endif