physxCAPI/physxCDLL/include/cudamanager/PxCudaContextManager.h

565 lines
21 KiB
C++

// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Copyright (c) 2008-2023 NVIDIA Corporation. All rights reserved.
#ifndef PX_CUDA_CONTEXT_MANAGER_H
#define PX_CUDA_CONTEXT_MANAGER_H
#include "foundation/PxPreprocessor.h"
#if PX_SUPPORT_GPU_PHYSX
#include "foundation/PxSimpleTypes.h"
#include "foundation/PxErrorCallback.h"
#include "foundation/PxFlags.h"
#include "PxCudaTypes.h"
#if !PX_DOXYGEN
namespace physx
{
#endif
class PxCudaContext;
/** \brief Possible graphic/CUDA interoperability modes for context */
struct PxCudaInteropMode
{
/**
* \brief Possible graphic/CUDA interoperability modes for context
*/
enum Enum
{
NO_INTEROP = 0,
D3D10_INTEROP,
D3D11_INTEROP,
OGL_INTEROP,
COUNT
};
};
struct PxCudaInteropRegisterFlag
{
enum Enum
{
eNONE = 0x00,
eREAD_ONLY = 0x01,
eWRITE_DISCARD = 0x02,
eSURFACE_LDST = 0x04,
eTEXTURE_GATHER = 0x08
};
};
/**
\brief An interface class that the user can implement in order for PhysX to use a user-defined device memory allocator.
*/
class PxDeviceAllocatorCallback
{
public:
/**
\brief Allocated device memory.
\param[in] ptr Pointer to store the allocated address
\param[in] size The amount of memory required
\return A boolean indicates the operation succeed or fail
*/
virtual bool memAlloc(void** ptr, size_t size) = 0;
/**
\brief Frees device memory.
\param[in] ptr The memory to free
\return A boolean indicates the operation succeed or fail
*/
virtual bool memFree(void* ptr) = 0;
protected:
virtual ~PxDeviceAllocatorCallback() {}
};
/**
\brief collection of set bits defined in NxCudaInteropRegisterFlag.
@see NxCudaInteropRegisterFlag
*/
typedef PxFlags<PxCudaInteropRegisterFlag::Enum, uint32_t> PxCudaInteropRegisterFlags;
PX_FLAGS_OPERATORS(PxCudaInteropRegisterFlag::Enum, uint32_t)
//! \brief Descriptor used to create a PxCudaContextManager
class PxCudaContextManagerDesc
{
public:
/**
* \brief The CUDA context to manage
*
* If left NULL, the PxCudaContextManager will create a new context. If
* graphicsDevice is also not NULL, this new CUDA context will be bound to
* that graphics device, enabling the use of CUDA/Graphics interop features.
*
* If ctx is not NULL, the specified context must be applied to the thread
* that is allocating the PxCudaContextManager at creation time (aka, it
* cannot be popped). The PxCudaContextManager will take ownership of the
* context until the manager is released. All access to the context must be
* gated by lock acquisition.
*
* If the user provides a context for the PxCudaContextManager, the context
* _must_ have either been created on the GPU ordinal returned by
* PxGetSuggestedCudaDeviceOrdinal() or on your graphics device.
*/
CUcontext* ctx;
/**
* \brief D3D device pointer or OpenGl context handle
*
* Only applicable when ctx is NULL, thus forcing a new context to be
* created. In that case, the created context will be bound to this
* graphics device.
*/
void* graphicsDevice;
/**
* \brief Application-specific GUID
*
* If your application employs PhysX modules that use CUDA you need to use a GUID
* so that patches for new architectures can be released for your game.You can obtain a GUID for your
* application from Nvidia.
*/
const char* appGUID;
/**
* \brief Application-specific device memory allocator
*
* the application can implement an device memory allocator, which inherites PxDeviceAllocatorCallback, and
* pass that to the PxCudaContextManagerDesc. The SDK will use that allocator to allocate device memory instead of
* using the defaul CUDA device memory allocator.
*/
PxDeviceAllocatorCallback* deviceAllocator;
/**
* \brief The CUDA/Graphics interop mode of this context
*
* If ctx is NULL, this value describes the nature of the graphicsDevice
* pointer provided by the user. Else it describes the nature of the
* context provided by the user.
*/
PxCudaInteropMode::Enum interopMode;
PX_INLINE PxCudaContextManagerDesc() :
ctx (NULL),
graphicsDevice (NULL),
appGUID (NULL),
deviceAllocator (NULL),
interopMode (PxCudaInteropMode::NO_INTEROP)
{
}
};
/**
\brief A cuda kernel index providing an index to the cuda module and the function name
*/
struct PxKernelIndex
{
PxU32 moduleIndex;
const char* functionName;
};
/**
* \brief Manages thread locks, and task scheduling for a CUDA context
*
* A PxCudaContextManager manages access to a single CUDA context, allowing it to
* be shared between multiple scenes.
* The context must be acquired from the manager before using any CUDA APIs unless stated differently.
*
* The PxCudaContextManager is based on the CUDA driver API and explicitly does not
* support the CUDA runtime API (aka, CUDART).
*/
class PxCudaContextManager
{
public:
/**
* \brief Schedules clear operation for a device memory buffer on the specified stream
*
* The cuda context will get acquired automatically
*/
template<typename T>
void clearDeviceBufferAsync(T* deviceBuffer, PxU32 numElements, CUstream stream, PxI32 value = 0)
{
clearDeviceBufferAsyncInternal(deviceBuffer, numElements * sizeof(T), stream, value);
}
/**
* \brief Copies a device buffer to the host
*
* The cuda context will get acquired automatically
*/
template<typename T>
void copyDToH(T* hostBuffer, const T* deviceBuffer, PxU32 numElements)
{
copyDToHInternal(hostBuffer, deviceBuffer, numElements * sizeof(T));
}
/**
* \brief Copies a host buffer to the device
*
* The cuda context will get acquired automatically
*/
template<typename T>
void copyHToD(T* deviceBuffer, const T* hostBuffer, PxU32 numElements)
{
copyHToDInternal(deviceBuffer, hostBuffer, numElements * sizeof(T));
}
/**
* \brief Schedules device to host copy operation on the specified stream
*
* The cuda context will get acquired automatically
*/
template<typename T>
void copyDToHAsync(T* hostBuffer, const T* deviceBuffer, PxU32 numElements, CUstream stream)
{
copyDToHAsyncInternal(hostBuffer, deviceBuffer, numElements * sizeof(T), stream);
}
/**
* \brief Schedules host to device copy operation on the specified stream
*
* The cuda context will get acquired automatically
*/
template<typename T>
void copyHToDAsync(T* deviceBuffer, const T* hostBuffer, PxU32 numElements, CUstream stream)
{
copyHToDAsyncInternal(deviceBuffer, hostBuffer, numElements * sizeof(T), stream);
}
/**
* \brief Schedules device to device copy operation on the specified stream
*
* The cuda context will get acquired automatically
*/
template<typename T>
void copyDToDAsync(T* dstDeviceBuffer, const T* srcDeviceBuffer, PxU32 numElements, CUstream stream)
{
copyDToDAsyncInternal(dstDeviceBuffer, srcDeviceBuffer, numElements * sizeof(T), stream);
}
/**
* \brief Allocates a device buffer
*
* The cuda context will get acquired automatically
*/
template<typename T>
void allocDeviceBuffer(T*& deviceBuffer, PxU32 numElements, const char* filename = __FILE__, PxI32 line = __LINE__)
{
void* ptr = allocDeviceBufferInternal(numElements * sizeof(T), filename, line);
deviceBuffer = reinterpret_cast<T*>(ptr);
}
/**
* \brief Allocates a device buffer and returns the pointer to the memory
*
* The cuda context will get acquired automatically
*/
template<typename T>
T* allocDeviceBuffer(PxU32 numElements, const char* filename = __FILE__, PxI32 line = __LINE__)
{
void* ptr = allocDeviceBufferInternal(numElements * sizeof(T), filename, line);
return reinterpret_cast<T*>(ptr);
}
/**
* \brief Frees a device buffer
*
* The cuda context will get acquired automatically
*/
template<typename T>
void freeDeviceBuffer(T*& deviceBuffer)
{
freeDeviceBufferInternal(deviceBuffer);
deviceBuffer = NULL;
}
/**
* \brief Allocates a pinned host buffer
*
* A pinned host buffer can be used on the gpu after getting a mapped device pointer from the pinned host buffer pointer, see getMappedDevicePtr
* The cuda context will get acquired automatically
* @see getMappedDevicePtr
*/
template<typename T>
void allocPinnedHostBuffer(T*& pinnedHostBuffer, PxU32 numElements, const char* filename = __FILE__, PxI32 line = __LINE__)
{
void* ptr = allocPinnedHostBufferInternal(numElements * sizeof(T), filename, line);
pinnedHostBuffer = reinterpret_cast<T*>(ptr);
}
/**
* \brief Allocates a pinned host buffer and returns the pointer to the memory
*
* A pinned host buffer can be used on the gpu after getting a mapped device pointer from the pinned host buffer pointer, see getMappedDevicePtr
* The cuda context will get acquired automatically
* @see getMappedDevicePtr
*/
template<typename T>
T* allocPinnedHostBuffer(PxU32 numElements, const char* filename = __FILE__, PxI32 line = __LINE__)
{
void* ptr = allocPinnedHostBufferInternal(numElements * sizeof(T), filename, line);
return reinterpret_cast<T*>(ptr);
}
/**
* \brief Frees a pinned host buffer
*
* The cuda context will get acquired automatically
*/
template<typename T>
void freePinnedHostBuffer(T*& pinnedHostBuffer)
{
freePinnedHostBufferInternal(pinnedHostBuffer);
pinnedHostBuffer = NULL;
}
/**
* \brief Gets a mapped pointer from a pinned host buffer that can be used in cuda kernels directly
*
* Data access performance with a mapped pinned host pointer will be slower than using a device pointer directly
* but the changes done in the kernel will be available on the host immediately.
* The cuda context will get acquired automatically
*/
virtual CUdeviceptr getMappedDevicePtr(void* pinnedHostBuffer) = 0;
/**
* \brief Acquire the CUDA context for the current thread
*
* Acquisitions are allowed to be recursive within a single thread.
* You can acquire the context multiple times so long as you release
* it the same count.
*
* The context must be acquired before using most CUDA functions.
*/
virtual void acquireContext() = 0;
/**
* \brief Release the CUDA context from the current thread
*
* The CUDA context should be released as soon as practically
* possible, to allow other CPU threads to work efficiently.
*/
virtual void releaseContext() = 0;
/**
* \brief Return the CUcontext
*/
virtual CUcontext getContext() = 0;
/**
* \brief Return the CudaContext
*/
virtual PxCudaContext* getCudaContext() = 0;
/**
* \brief Context manager has a valid CUDA context
*
* This method should be called after creating a PxCudaContextManager,
* especially if the manager was responsible for allocating its own
* CUDA context (desc.ctx == NULL).
*/
virtual bool contextIsValid() const = 0;
/* Query CUDA context and device properties, without acquiring context */
virtual bool supportsArchSM10() const = 0; //!< G80
virtual bool supportsArchSM11() const = 0; //!< G92
virtual bool supportsArchSM12() const = 0; //!< GT200
virtual bool supportsArchSM13() const = 0; //!< GT260
virtual bool supportsArchSM20() const = 0; //!< GF100
virtual bool supportsArchSM30() const = 0; //!< GK100
virtual bool supportsArchSM35() const = 0; //!< GK110
virtual bool supportsArchSM50() const = 0; //!< GM100
virtual bool supportsArchSM52() const = 0; //!< GM200
virtual bool supportsArchSM60() const = 0; //!< GP100
virtual bool isIntegrated() const = 0; //!< true if GPU is an integrated (MCP) part
virtual bool canMapHostMemory() const = 0; //!< true if GPU map host memory to GPU (0-copy)
virtual int getDriverVersion() const = 0; //!< returns cached value of cuGetDriverVersion()
virtual size_t getDeviceTotalMemBytes() const = 0; //!< returns cached value of device memory size
virtual int getMultiprocessorCount() const = 0; //!< returns cache value of SM unit count
virtual unsigned int getClockRate() const = 0; //!< returns cached value of SM clock frequency
virtual int getSharedMemPerBlock() const = 0; //!< returns total amount of shared memory available per block in bytes
virtual int getSharedMemPerMultiprocessor() const = 0; //!< returns total amount of shared memory available per multiprocessor in bytes
virtual unsigned int getMaxThreadsPerBlock() const = 0; //!< returns the maximum number of threads per block
virtual const char *getDeviceName() const = 0; //!< returns device name retrieved from driver
virtual CUdevice getDevice() const = 0; //!< returns device handle retrieved from driver
virtual PxCudaInteropMode::Enum getInteropMode() const = 0; //!< interop mode the context was created with
virtual void setUsingConcurrentStreams(bool) = 0; //!< turn on/off using concurrent streams for GPU work
virtual bool getUsingConcurrentStreams() const = 0; //!< true if GPU work can run in concurrent streams
/* End query methods that don't require context to be acquired */
/**
* \brief Register a rendering resource with CUDA
*
* This function is called to register render resources (allocated
* from OpenGL) with CUDA so that the memory may be shared
* between the two systems. This is only required for render
* resources that are designed for interop use. In APEX, each
* render resource descriptor that could support interop has a
* 'registerInCUDA' boolean variable.
*
* The function must be called again any time your graphics device
* is reset, to re-register the resource.
*
* Returns true if the registration succeeded. A registered
* resource must be unregistered before it can be released.
*
* \param resource [OUT] the handle to the resource that can be used with CUDA
* \param buffer [IN] GLuint buffer index to be mapped to cuda
* \param flags [IN] cuda interop registration flags
*/
virtual bool registerResourceInCudaGL(CUgraphicsResource& resource, uint32_t buffer, PxCudaInteropRegisterFlags flags = PxCudaInteropRegisterFlags()) = 0;
/**
* \brief Register a rendering resource with CUDA
*
* This function is called to register render resources (allocated
* from Direct3D) with CUDA so that the memory may be shared
* between the two systems. This is only required for render
* resources that are designed for interop use. In APEX, each
* render resource descriptor that could support interop has a
* 'registerInCUDA' boolean variable.
*
* The function must be called again any time your graphics device
* is reset, to re-register the resource.
*
* Returns true if the registration succeeded. A registered
* resource must be unregistered before it can be released.
*
* \param resource [OUT] the handle to the resource that can be used with CUDA
* \param resourcePointer [IN] A pointer to either IDirect3DResource9, or ID3D10Device, or ID3D11Resource to be registered.
* \param flags [IN] cuda interop registration flags
*/
virtual bool registerResourceInCudaD3D(CUgraphicsResource& resource, void* resourcePointer, PxCudaInteropRegisterFlags flags = PxCudaInteropRegisterFlags()) = 0;
/**
* \brief Unregister a rendering resource with CUDA
*
* If a render resource was successfully registered with CUDA using
* the registerResourceInCuda***() methods, this function must be called
* to unregister the resource before the it can be released.
*/
virtual bool unregisterResourceInCuda(CUgraphicsResource resource) = 0;
/**
* \brief Determine if the user has configured a dedicated PhysX GPU in the NV Control Panel
* \note If using CUDA Interop, this will always return false
* \returns 1 if there is a dedicated GPU
* 0 if there is NOT a dedicated GPU
* -1 if the routine is not implemented
*/
virtual int usingDedicatedGPU() const = 0;
/**
* \brief Get the cuda modules that have been loaded into this context on construction
* \return Pointer to the cuda modules
*/
virtual CUmodule* getCuModules() = 0;
/**
* \brief Release the PxCudaContextManager
*
* If the PxCudaContextManager created the CUDA context it was
* responsible for, it also frees that context.
*
* Do not release the PxCudaContextManager if there are any scenes
* using it. Those scenes must be released first.
*
*/
virtual void release() = 0;
protected:
/**
* \brief protected destructor, use release() method
*/
virtual ~PxCudaContextManager() {}
virtual void* allocDeviceBufferInternal(PxU32 numBytes, const char* filename = NULL, PxI32 line = -1) = 0;
virtual void* allocPinnedHostBufferInternal(PxU32 numBytes, const char* filename = NULL, PxI32 line = -1) = 0;
virtual void freeDeviceBufferInternal(void* deviceBuffer) = 0;
virtual void freePinnedHostBufferInternal(void* pinnedHostBuffer) = 0;
virtual void clearDeviceBufferAsyncInternal(void* deviceBuffer, PxU32 numBytes, CUstream stream, PxI32 value) = 0;
virtual void copyDToHAsyncInternal(void* hostBuffer, const void* deviceBuffer, PxU32 numBytes, CUstream stream) = 0;
virtual void copyHToDAsyncInternal(void* deviceBuffer, const void* hostBuffer, PxU32 numBytes, CUstream stream) = 0;
virtual void copyDToDAsyncInternal(void* dstDeviceBuffer, const void* srcDeviceBuffer, PxU32 numBytes, CUstream stream) = 0;
virtual void copyDToHInternal(void* hostBuffer, const void* deviceBuffer, PxU32 numBytes) = 0;
virtual void copyHToDInternal(void* deviceBuffer, const void* hostBuffer, PxU32 numBytes) = 0;
};
#define PX_DEVICE_ALLOC(cudaContextManager, deviceBuffer, numElements) cudaContextManager->allocDeviceBuffer(deviceBuffer, numElements, __FILE__, __LINE__)
#define PX_DEVICE_ALLOC_T(T, cudaContextManager, numElements) cudaContextManager->allocDeviceBuffer<T>(numElements, __FILE__, __LINE__)
#define PX_DEVICE_FREE(cudaContextManager, deviceBuffer) cudaContextManager->freeDeviceBuffer(deviceBuffer);
#define PX_PINNED_HOST_ALLOC(cudaContextManager, pinnedHostBuffer, numElements) cudaContextManager->allocPinnedHostBuffer(pinnedHostBuffer, numElements, __FILE__, __LINE__)
#define PX_PINNED_HOST_ALLOC_T(T, cudaContextManager, numElements) cudaContextManager->allocPinnedHostBuffer<T>(numElements, __FILE__, __LINE__)
#define PX_PINNED_HOST_FREE(cudaContextManager, pinnedHostBuffer) cudaContextManager->freePinnedHostBuffer(pinnedHostBuffer);
/**
* \brief Convenience class for holding CUDA lock within a scope
*/
class PxScopedCudaLock
{
public:
/**
* \brief ScopedCudaLock constructor
*/
PxScopedCudaLock(PxCudaContextManager& ctx) : mCtx(&ctx)
{
mCtx->acquireContext();
}
/**
* \brief ScopedCudaLock destructor
*/
~PxScopedCudaLock()
{
mCtx->releaseContext();
}
protected:
/**
* \brief CUDA context manager pointer (initialized in the constructor)
*/
PxCudaContextManager* mCtx;
};
#if !PX_DOXYGEN
} // namespace physx
#endif
#endif // PX_SUPPORT_GPU_PHYSX
#endif