415 lines
16 KiB
C++
415 lines
16 KiB
C++
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions
|
|
// are met:
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the distribution.
|
|
// * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY
|
|
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Copyright (c) 2008-2023 NVIDIA Corporation. All rights reserved.
|
|
// Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved.
|
|
// Copyright (c) 2001-2004 NovodeX AG. All rights reserved.
|
|
|
|
#pragma once
|
|
/** \addtogroup vehicle2
|
|
@{
|
|
*/
|
|
|
|
|
|
#include "foundation/PxTransform.h"
|
|
#include "foundation/PxFoundation.h"
|
|
|
|
#include "common/PxCoreUtilityTypes.h"
|
|
|
|
#include "vehicle2/PxVehicleParams.h"
|
|
#include "vehicle2/PxVehicleFunctions.h"
|
|
|
|
#if !PX_DOXYGEN
|
|
namespace physx
|
|
{
|
|
namespace vehicle2
|
|
{
|
|
#endif
|
|
|
|
struct PxVehicleSuspensionParams
|
|
{
|
|
/**
|
|
\brief suspensionAttachment specifies the wheel pose at maximum compression.
|
|
\note suspensionAttachment is specified in the frame of the rigid body.
|
|
\note camber, steer and toe angles are all applied in the suspension frame.
|
|
*/
|
|
PxTransform suspensionAttachment;
|
|
|
|
/**
|
|
\brief suspensionTravelDir specifies the direction of suspension travel.
|
|
\note suspensionTravelDir is specified in the frame of the rigid body.
|
|
*/
|
|
PxVec3 suspensionTravelDir;
|
|
|
|
/**
|
|
\brief suspensionTravelDist is the maximum distance that the suspenson can elongate along #suspensionTravelDir
|
|
from the pose specified by #suspensionAttachment.
|
|
\note The position suspensionAttachment.p + #suspensionTravelDir*#suspensionTravelDist corresponds to the
|
|
the suspension at maximum droop in the rigid body frame.
|
|
*/
|
|
PxReal suspensionTravelDist;
|
|
|
|
/**
|
|
\brief wheelAttachment is the pose of the wheel in the suspension frame.
|
|
\note The rotation angle around the wheel's lateral axis is applied in the wheel attachment frame.
|
|
*/
|
|
PxTransform wheelAttachment;
|
|
|
|
|
|
PX_FORCE_INLINE PxVehicleSuspensionParams transformAndScale(
|
|
const PxVehicleFrame& srcFrame, const PxVehicleFrame& trgFrame, const PxVehicleScale& srcScale, const PxVehicleScale& trgScale) const
|
|
{
|
|
PxVehicleSuspensionParams r = *this;
|
|
r.suspensionAttachment= PxVehicleTransformFrameToFrame(srcFrame, trgFrame, srcScale, trgScale, suspensionAttachment);
|
|
r.suspensionTravelDir = PxVehicleTransformFrameToFrame(srcFrame, trgFrame, suspensionTravelDir);
|
|
r.suspensionTravelDist *= (trgScale.scale/srcScale.scale);
|
|
r.wheelAttachment = PxVehicleTransformFrameToFrame(srcFrame, trgFrame, srcScale, trgScale, wheelAttachment);
|
|
return r;
|
|
}
|
|
|
|
PX_FORCE_INLINE bool isValid() const
|
|
{
|
|
PX_CHECK_AND_RETURN_VAL(suspensionAttachment.isValid(), "PxVehicleSuspensionParams.suspensionAttachment must be a valid transform", false);
|
|
PX_CHECK_AND_RETURN_VAL(suspensionTravelDir.isFinite(), "PxVehicleSuspensionParams.suspensionTravelDir must be a valid vector", false);
|
|
PX_CHECK_AND_RETURN_VAL(suspensionTravelDir.isNormalized(), "PxVehicleSuspensionParams.suspensionTravelDir must be a unit vector", false);
|
|
PX_CHECK_AND_RETURN_VAL(suspensionTravelDist > 0.0f, "PxVehicleSuspensionParams.suspensionTravelDist must be greater than zero", false);
|
|
PX_CHECK_AND_RETURN_VAL(wheelAttachment.isValid(), "PxVehicleSuspensionParams.wheelAttachment must be a valid transform", false);
|
|
return true;
|
|
}
|
|
};
|
|
|
|
struct PxVehicleSuspensionJounceCalculationType
|
|
{
|
|
enum Enum
|
|
{
|
|
eRAYCAST, //!< The jounce is calculated using a raycast against the plane of the road geometry state
|
|
eSWEEP, //!< The jounce is calculated by sweeping a cylinder against the plane of the road geometry state
|
|
eMAX_NB
|
|
};
|
|
};
|
|
|
|
struct PxVehicleSuspensionStateCalculationParams
|
|
{
|
|
PxVehicleSuspensionJounceCalculationType::Enum suspensionJounceCalculationType;
|
|
|
|
/**
|
|
\brief Limit the suspension expansion dynamics.
|
|
|
|
If a hit with the ground is detected, the suspension jounce will be set such that the wheel
|
|
is placed on the ground. This can result in large changes to jounce within a single
|
|
simulation frame, if the ground surface has high frequency or if the simulation time step
|
|
is large. As a result, large damping forces can evolve and cause undesired behavior. If this
|
|
parameter is set to true, the suspension expansion speed will be limited to what can be
|
|
achieved given the time step, suspension stiffness etc. As a consequence, handling of the
|
|
vehicle will be affected as the wheel might loose contact with the ground more easily.
|
|
*/
|
|
bool limitSuspensionExpansionVelocity;
|
|
|
|
PX_FORCE_INLINE PxVehicleSuspensionStateCalculationParams transformAndScale(
|
|
const PxVehicleFrame& srcFrame, const PxVehicleFrame& trgFrame, const PxVehicleScale& srcScale, const PxVehicleScale& trgScale) const
|
|
{
|
|
PX_UNUSED(srcFrame);
|
|
PX_UNUSED(trgFrame);
|
|
PX_UNUSED(srcScale);
|
|
PX_UNUSED(trgScale);
|
|
return *this;
|
|
}
|
|
|
|
PX_FORCE_INLINE bool isValid() const
|
|
{
|
|
return true;
|
|
}
|
|
};
|
|
|
|
/**
|
|
\brief Compliance describes how toe and camber angle and force application points are affected by suspension compression.
|
|
\note Each compliance term is in the form of a graph with up to 3 points.
|
|
\note Each point in the graph has form (jounce/suspensionTravelDist, complianceValue).
|
|
\note The sequence of points must respresent monotonically increasing values of jounce.
|
|
\note The compliance value can be computed by linear interpolation.
|
|
\note If any graph has zero points in it, a value of 0.0 is used for the compliance value.
|
|
\note If any graph has 1 point in it, the compliance value of that point is used directly.
|
|
*/
|
|
struct PxVehicleSuspensionComplianceParams
|
|
{
|
|
/**
|
|
\brief A graph of toe angle against jounce/suspensionTravelDist with the toe angle expressed in radians.
|
|
\note The toe angle is applied in the suspension frame.
|
|
*/
|
|
PxVehicleFixedSizeLookupTable<PxReal, 3> wheelToeAngle;
|
|
|
|
/**
|
|
\brief A graph of camber angle against jounce/suspensionTravelDist with the camber angle expressed in radians.
|
|
\note The camber angle is applied in the suspension frame.
|
|
*/
|
|
PxVehicleFixedSizeLookupTable<PxReal, 3> wheelCamberAngle;
|
|
|
|
/**
|
|
\brief Suspension forces are applied at an offset from the suspension frame. suspForceAppPoint
|
|
specifies the (X, Y, Z) components of that offset as a function of jounce/suspensionTravelDist.
|
|
*/
|
|
PxVehicleFixedSizeLookupTable<PxVec3, 3> suspForceAppPoint;
|
|
|
|
/**
|
|
\brief Tire forces are applied at an offset from the suspension frame. tireForceAppPoint
|
|
specifies the (X, Y, Z) components of that offset as a function of jounce/suspensionTravelDist.
|
|
*/
|
|
PxVehicleFixedSizeLookupTable<PxVec3, 3> tireForceAppPoint;
|
|
|
|
PX_FORCE_INLINE PxVehicleSuspensionComplianceParams transformAndScale(
|
|
const PxVehicleFrame& srcFrame, const PxVehicleFrame& trgFrame, const PxVehicleScale& srcScale, const PxVehicleScale& trgScale) const
|
|
{
|
|
PX_UNUSED(srcFrame);
|
|
PX_UNUSED(trgFrame);
|
|
PxVehicleSuspensionComplianceParams r = *this;
|
|
|
|
const PxReal scale = trgScale.scale / srcScale.scale;
|
|
for (PxU32 i = 0; i < r.suspForceAppPoint.nbDataPairs; i++)
|
|
{
|
|
r.suspForceAppPoint.yVals[i] = PxVehicleTransformFrameToFrame(srcFrame, trgFrame, suspForceAppPoint.yVals[i]);
|
|
r.suspForceAppPoint.yVals[i] *= scale;
|
|
}
|
|
for (PxU32 i = 0; i < r.tireForceAppPoint.nbDataPairs; i++)
|
|
{
|
|
r.tireForceAppPoint.yVals[i] = PxVehicleTransformFrameToFrame(srcFrame, trgFrame, tireForceAppPoint.yVals[i]);
|
|
r.tireForceAppPoint.yVals[i] *= scale;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
PX_FORCE_INLINE bool isValid() const
|
|
{
|
|
PX_CHECK_AND_RETURN_VAL(wheelToeAngle.isValid(), "PxVehicleSuspensionComplianceParams.wheelToeAngle is invalid", false);
|
|
PX_CHECK_AND_RETURN_VAL(wheelCamberAngle.isValid(), "PxVehicleSuspensionComplianceParams.wheelCamberAngle is invalid", false);
|
|
PX_CHECK_AND_RETURN_VAL(suspForceAppPoint.isValid(), "PxVehicleSuspensionComplianceParams.wheelToeAngle is invalid", false);
|
|
PX_CHECK_AND_RETURN_VAL(tireForceAppPoint.isValid(), "PxVehicleSuspensionComplianceParams.wheelCamberAngle is invalid", false);
|
|
|
|
for (PxU32 i = 0; i < wheelToeAngle.nbDataPairs; i++)
|
|
{
|
|
PX_CHECK_AND_RETURN_VAL(wheelToeAngle.xVals[i] >= 0.0f && wheelToeAngle.xVals[i] <= 1.0f, "PxVehicleSuspensionComplianceParams.wheelToeAngle must be an array of points (x,y) with x in range [0, 1]", false);
|
|
PX_CHECK_AND_RETURN_VAL(wheelToeAngle.yVals[i] >= -PxPi && wheelToeAngle.yVals[i] <= PxPi, "PxVehicleSuspensionComplianceParams.wheelToeAngle must be an array of points (x,y) with y in range [-Pi, Pi]", false);
|
|
}
|
|
for (PxU32 i = 0; i < wheelCamberAngle.nbDataPairs; i++)
|
|
{
|
|
PX_CHECK_AND_RETURN_VAL(wheelCamberAngle.xVals[i] >= 0.0f && wheelCamberAngle.xVals[i] <= 1.0f, "PxVehicleSuspensionComplianceParams.wheelCamberAngle must be an array of points (x,y) with x in range [0, 1]", false);
|
|
PX_CHECK_AND_RETURN_VAL(wheelCamberAngle.yVals[i] >= -PxPi && wheelCamberAngle.yVals[i] <= PxPi, "PxVehicleSuspensionComplianceParams.wheelCamberAngle must be an array of points (x,y) with y in range [-Pi, Pi]", false);
|
|
}
|
|
|
|
for (PxU32 i = 0; i < suspForceAppPoint.nbDataPairs; i++)
|
|
{
|
|
PX_CHECK_AND_RETURN_VAL(suspForceAppPoint.xVals[i] >= 0.0f && suspForceAppPoint.xVals[i] <= 1.0f, "PxVehicleSuspensionComplianceParams.suspForceAppPoint[0] must be an array of points (x,y) with x in range [0, 1]", false);
|
|
}
|
|
for (PxU32 i = 0; i < tireForceAppPoint.nbDataPairs; i++)
|
|
{
|
|
PX_CHECK_AND_RETURN_VAL(tireForceAppPoint.xVals[i] >= 0.0f && tireForceAppPoint.xVals[i] <= 1.0f, "PxVehicleSuspensionComplianceParams.tireForceAppPoint[0] must be an array of points (x,y) with x in range [0, 1]", false);
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
/**
|
|
\brief Suspension force is computed by converting suspenson state to suspension force under the assumption of a linear spring.
|
|
@see PxVehicleSuspensionForceUpdate
|
|
*/
|
|
struct PxVehicleSuspensionForceParams
|
|
{
|
|
/**
|
|
\brief Spring strength of suspension.
|
|
|
|
<b>Range:</b> (0, inf)<br>
|
|
<b>Unit:</b> mass / (time^2)
|
|
*/
|
|
PxReal stiffness;
|
|
|
|
/**
|
|
\brief Spring damper rate of suspension.
|
|
|
|
<b>Range:</b> [0, inf)<br>
|
|
<b>Unit:</b> mass / time
|
|
*/
|
|
PxReal damping;
|
|
|
|
/**
|
|
\brief Part of the vehicle mass that is supported by the suspension spring.
|
|
|
|
<b>Range:</b> (0, inf)<br>
|
|
<b>Unit:</b> mass
|
|
*/
|
|
PxReal sprungMass;
|
|
|
|
PX_FORCE_INLINE PxVehicleSuspensionForceParams transformAndScale(
|
|
const PxVehicleFrame& srcFrame, const PxVehicleFrame& trgFrame, const PxVehicleScale& srcScale, const PxVehicleScale& trgScale) const
|
|
{
|
|
PX_UNUSED(srcFrame);
|
|
PX_UNUSED(trgFrame);
|
|
PX_UNUSED(srcScale);
|
|
PX_UNUSED(trgScale);
|
|
return *this;
|
|
}
|
|
|
|
PX_FORCE_INLINE bool isValid() const
|
|
{
|
|
PX_CHECK_AND_RETURN_VAL(stiffness > 0.0f, "PxVehicleSuspensionForceParams.stiffness must be greater than zero", false);
|
|
PX_CHECK_AND_RETURN_VAL(damping >= 0.0f, "PxVehicleSuspensionForceParams.damping must be greater than or equal to zero", false);
|
|
PX_CHECK_AND_RETURN_VAL(sprungMass > 0.0f, "PxVehicleSuspensionForceParams.sprungMass must be greater than zero", false);
|
|
return true;
|
|
}
|
|
};
|
|
|
|
/**
|
|
\brief Suspension force is computed by converting suspenson state to suspension force under the assumption of a linear spring.
|
|
@see PxVehicleSuspensionLegacyForceUpdate
|
|
@deprecated
|
|
*/
|
|
struct PX_DEPRECATED PxVehicleSuspensionForceLegacyParams
|
|
{
|
|
/**
|
|
\brief Spring strength of suspension.
|
|
|
|
<b>Range:</b> (0, inf)<br>
|
|
<b>Unit:</b> mass / (time^2)
|
|
*/
|
|
PxReal stiffness;
|
|
|
|
/**
|
|
\brief Spring damper rate of suspension.
|
|
|
|
<b>Range:</b> [0, inf)<br>
|
|
<b>Unit:</b> mass / time
|
|
*/
|
|
PxReal damping;
|
|
|
|
/**
|
|
\brief The suspension compression that balances the gravitational force acting on the sprung mass.
|
|
|
|
<b>Range:</b> (0, inf)<br>
|
|
<b>Unit:</b> length
|
|
*/
|
|
PxReal restDistance;
|
|
|
|
/**
|
|
\brief The mass supported by the suspension spring.
|
|
|
|
<b>Range:</b> (0, inf)<br>
|
|
<b>Unit:</b> mass
|
|
*/
|
|
PxReal sprungMass;
|
|
|
|
PX_FORCE_INLINE PxVehicleSuspensionForceLegacyParams transformAndScale(
|
|
const PxVehicleFrame& srcFrame, const PxVehicleFrame& trgFrame, const PxVehicleScale& srcScale, const PxVehicleScale& trgScale) const
|
|
{
|
|
PX_UNUSED(srcFrame);
|
|
PX_UNUSED(trgFrame);
|
|
PxVehicleSuspensionForceLegacyParams r = *this;
|
|
r.restDistance *= (trgScale.scale / srcScale.scale);
|
|
return *this;
|
|
}
|
|
|
|
PX_FORCE_INLINE bool isValid() const
|
|
{
|
|
PX_CHECK_AND_RETURN_VAL(stiffness > 0.0f, "PxVehicleSuspensionForceLegacyParams.stiffness must be greater than zero", false);
|
|
PX_CHECK_AND_RETURN_VAL(damping >= 0.0f, "PxVehicleSuspensionForceLegacyParams.damping must be greater than or equal to zero", false);
|
|
PX_CHECK_AND_RETURN_VAL(restDistance > 0.0f, "PxVehicleSuspensionForceLegacyParams.restDistance must be greater than zero", false);
|
|
PX_CHECK_AND_RETURN_VAL(sprungMass > 0.0f, "PxVehicleSuspensionForceLegacyParams.sprungMass must be greater than zero", false);
|
|
return true;
|
|
}
|
|
|
|
};
|
|
|
|
/**
|
|
\brief The purpose of the anti-roll bar is to generate a torque to apply to the vehicle's rigid body that will reduce the jounce difference arising
|
|
between any pair of chosen wheels. If the chosen wheels share an axle, the anti-roll bar will attempt to reduce the roll angle of the vehicle's rigid body.
|
|
Alternatively, if the chosen wheels are the front and rear wheels along one side of the vehicle, the anti-roll bar will attempt to reduce the pitch angle of the
|
|
vehicle's rigid body.
|
|
*/
|
|
struct PxVehicleAntiRollForceParams
|
|
{
|
|
/*
|
|
\brief The anti-roll bar connects two wheels with indices wheel0 and wheel1
|
|
\note wheel0 and wheel1 may be chosen to have the effect of an anti-dive bar or to have the effect of an anti-roll bar.
|
|
*/
|
|
PxU32 wheel0;
|
|
|
|
/*
|
|
\brief The anti-roll bar connects two wheels with indices wheel0 and wheel1
|
|
\note wheel0 and wheel1 may be chosen to have the effect of an anti-dive bar or to have the effect of an anti-roll bar.
|
|
*/
|
|
PxU32 wheel1;
|
|
|
|
/*
|
|
\brief The linear stiffness of the anti-roll bar.
|
|
\note A positive stiffness will work to reduce the discrepancy in jounce between wheel0 and wheel1.
|
|
\note A negative stiffness will work to increase the discrepancy in jounce between wheel0 and wheel1.
|
|
|
|
<b>Unit:</b> mass / (time^2)
|
|
*/
|
|
PxReal stiffness;
|
|
|
|
PX_FORCE_INLINE PxVehicleAntiRollForceParams transformAndScale(
|
|
const PxVehicleFrame& srcFrame, const PxVehicleFrame& trgFrame, const PxVehicleScale& srcScale, const PxVehicleScale& trgScale) const
|
|
{
|
|
PX_UNUSED(srcFrame);
|
|
PX_UNUSED(trgFrame);
|
|
PX_UNUSED(srcScale);
|
|
PX_UNUSED(trgScale);
|
|
return *this;
|
|
}
|
|
|
|
PX_FORCE_INLINE bool isValid(const PxVehicleAxleDescription& axleDesc) const
|
|
{
|
|
if (!PxIsFinite(stiffness))
|
|
return false;
|
|
if (wheel0 == wheel1)
|
|
return false;
|
|
|
|
//Check that each wheel id is a valid wheel.
|
|
const PxU32 wheelIds[2] = { wheel0, wheel1 };
|
|
for (PxU32 k = 0; k < 2; k++)
|
|
{
|
|
const PxU32 wheelToFind = wheelIds[k];
|
|
bool foundWheelInAxleDescription = false;
|
|
for (PxU32 i = 0; i < axleDesc.nbWheels; i++)
|
|
{
|
|
const PxU32 wheel = axleDesc.wheelIdsInAxleOrder[i];
|
|
if (wheel == wheelToFind)
|
|
{
|
|
foundWheelInAxleDescription = true;
|
|
}
|
|
}
|
|
if (!foundWheelInAxleDescription)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
};
|
|
|
|
|
|
#if !PX_DOXYGEN
|
|
} // namespace vehicle2
|
|
} // namespace physx
|
|
#endif
|
|
|
|
/** @} */
|