513 lines
14 KiB
C++
513 lines
14 KiB
C++
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions
|
|
// are met:
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the distribution.
|
|
// * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY
|
|
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Copyright (c) 2008-2023 NVIDIA Corporation. All rights reserved.
|
|
// Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved.
|
|
// Copyright (c) 2001-2004 NovodeX AG. All rights reserved.
|
|
|
|
#ifndef PX_MAT33_H
|
|
#define PX_MAT33_H
|
|
/** \addtogroup foundation
|
|
@{
|
|
*/
|
|
|
|
#include "foundation/PxVec3.h"
|
|
#include "foundation/PxQuat.h"
|
|
|
|
#if !PX_DOXYGEN
|
|
namespace physx
|
|
{
|
|
#endif
|
|
/*!
|
|
\brief 3x3 matrix class
|
|
|
|
Some clarifications, as there have been much confusion about matrix formats etc in the past.
|
|
|
|
Short:
|
|
- Matrix have base vectors in columns (vectors are column matrices, 3x1 matrices).
|
|
- Matrix is physically stored in column major format
|
|
- Matrices are concaternated from left
|
|
|
|
Long:
|
|
Given three base vectors a, b and c the matrix is stored as
|
|
|
|
|a.x b.x c.x|
|
|
|a.y b.y c.y|
|
|
|a.z b.z c.z|
|
|
|
|
Vectors are treated as columns, so the vector v is
|
|
|
|
|x|
|
|
|y|
|
|
|z|
|
|
|
|
And matrices are applied _before_ the vector (pre-multiplication)
|
|
v' = M*v
|
|
|
|
|x'| |a.x b.x c.x| |x| |a.x*x + b.x*y + c.x*z|
|
|
|y'| = |a.y b.y c.y| * |y| = |a.y*x + b.y*y + c.y*z|
|
|
|z'| |a.z b.z c.z| |z| |a.z*x + b.z*y + c.z*z|
|
|
|
|
|
|
Physical storage and indexing:
|
|
To be compatible with popular 3d rendering APIs (read D3d and OpenGL)
|
|
the physical indexing is
|
|
|
|
|0 3 6|
|
|
|1 4 7|
|
|
|2 5 8|
|
|
|
|
index = column*3 + row
|
|
|
|
which in C++ translates to M[column][row]
|
|
|
|
The mathematical indexing is M_row,column and this is what is used for _-notation
|
|
so _12 is 1st row, second column and operator(row, column)!
|
|
*/
|
|
|
|
template<class Type>
|
|
class PxMat33T
|
|
{
|
|
public:
|
|
//! Default constructor
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxMat33T()
|
|
{
|
|
}
|
|
|
|
//! identity constructor
|
|
PX_CUDA_CALLABLE PX_INLINE PxMat33T(PxIDENTITY) :
|
|
column0(Type(1.0), Type(0.0), Type(0.0)),
|
|
column1(Type(0.0), Type(1.0), Type(0.0)),
|
|
column2(Type(0.0), Type(0.0), Type(1.0))
|
|
{
|
|
}
|
|
|
|
//! zero constructor
|
|
PX_CUDA_CALLABLE PX_INLINE PxMat33T(PxZERO) :
|
|
column0(Type(0.0)),
|
|
column1(Type(0.0)),
|
|
column2(Type(0.0))
|
|
{
|
|
}
|
|
|
|
//! Construct from three base vectors
|
|
PX_CUDA_CALLABLE PxMat33T(const PxVec3T<Type>& col0, const PxVec3T<Type>& col1, const PxVec3T<Type>& col2) :
|
|
column0(col0),
|
|
column1(col1),
|
|
column2(col2)
|
|
{
|
|
}
|
|
|
|
//! constructor from a scalar, which generates a multiple of the identity matrix
|
|
explicit PX_CUDA_CALLABLE PX_INLINE PxMat33T(Type r) :
|
|
column0(r, Type(0.0), Type(0.0)),
|
|
column1(Type(0.0), r, Type(0.0)),
|
|
column2(Type(0.0), Type(0.0), r)
|
|
{
|
|
}
|
|
|
|
//! Construct from Type[9]
|
|
explicit PX_CUDA_CALLABLE PX_INLINE PxMat33T(Type values[]) :
|
|
column0(values[0], values[1], values[2]),
|
|
column1(values[3], values[4], values[5]),
|
|
column2(values[6], values[7], values[8])
|
|
{
|
|
}
|
|
|
|
//! Construct from a quaternion
|
|
explicit PX_CUDA_CALLABLE PX_FORCE_INLINE PxMat33T(const PxQuatT<Type>& q)
|
|
{
|
|
// PT: TODO: PX-566
|
|
const Type x = q.x;
|
|
const Type y = q.y;
|
|
const Type z = q.z;
|
|
const Type w = q.w;
|
|
|
|
const Type x2 = x + x;
|
|
const Type y2 = y + y;
|
|
const Type z2 = z + z;
|
|
|
|
const Type xx = x2 * x;
|
|
const Type yy = y2 * y;
|
|
const Type zz = z2 * z;
|
|
|
|
const Type xy = x2 * y;
|
|
const Type xz = x2 * z;
|
|
const Type xw = x2 * w;
|
|
|
|
const Type yz = y2 * z;
|
|
const Type yw = y2 * w;
|
|
const Type zw = z2 * w;
|
|
|
|
column0 = PxVec3T<Type>(Type(1.0) - yy - zz, xy + zw, xz - yw);
|
|
column1 = PxVec3T<Type>(xy - zw, Type(1.0) - xx - zz, yz + xw);
|
|
column2 = PxVec3T<Type>(xz + yw, yz - xw, Type(1.0) - xx - yy);
|
|
}
|
|
|
|
//! Copy constructor
|
|
PX_CUDA_CALLABLE PX_INLINE PxMat33T(const PxMat33T& other) :
|
|
column0(other.column0),
|
|
column1(other.column1),
|
|
column2(other.column2)
|
|
{
|
|
}
|
|
|
|
//! Assignment operator
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxMat33T& operator=(const PxMat33T& other)
|
|
{
|
|
column0 = other.column0;
|
|
column1 = other.column1;
|
|
column2 = other.column2;
|
|
return *this;
|
|
}
|
|
|
|
//! Construct from diagonal, off-diagonals are zero.
|
|
PX_CUDA_CALLABLE PX_INLINE static const PxMat33T createDiagonal(const PxVec3T<Type>& d)
|
|
{
|
|
return PxMat33T(PxVec3T<Type>(d.x, Type(0.0), Type(0.0)),
|
|
PxVec3T<Type>(Type(0.0), d.y, Type(0.0)),
|
|
PxVec3T<Type>(Type(0.0), Type(0.0), d.z));
|
|
}
|
|
|
|
//! Computes the outer product of two vectors
|
|
PX_CUDA_CALLABLE PX_INLINE static const PxMat33T outer(const PxVec3T<Type>& a, const PxVec3T<Type>& b)
|
|
{
|
|
return PxMat33T(a * b.x, a * b.y, a * b.z);
|
|
}
|
|
|
|
/**
|
|
\brief returns true if the two matrices are exactly equal
|
|
*/
|
|
PX_CUDA_CALLABLE PX_INLINE bool operator==(const PxMat33T& m) const
|
|
{
|
|
return column0 == m.column0 && column1 == m.column1 && column2 == m.column2;
|
|
}
|
|
|
|
//! Get transposed matrix
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE const PxMat33T getTranspose() const
|
|
{
|
|
const PxVec3T<Type> v0(column0.x, column1.x, column2.x);
|
|
const PxVec3T<Type> v1(column0.y, column1.y, column2.y);
|
|
const PxVec3T<Type> v2(column0.z, column1.z, column2.z);
|
|
|
|
return PxMat33T(v0, v1, v2);
|
|
}
|
|
|
|
//! Get the real inverse
|
|
PX_CUDA_CALLABLE PX_INLINE const PxMat33T getInverse() const
|
|
{
|
|
const Type det = getDeterminant();
|
|
PxMat33T inverse;
|
|
|
|
if(det != Type(0.0))
|
|
{
|
|
const Type invDet = Type(1.0) / det;
|
|
|
|
inverse.column0.x = invDet * (column1.y * column2.z - column2.y * column1.z);
|
|
inverse.column0.y = invDet * -(column0.y * column2.z - column2.y * column0.z);
|
|
inverse.column0.z = invDet * (column0.y * column1.z - column0.z * column1.y);
|
|
|
|
inverse.column1.x = invDet * -(column1.x * column2.z - column1.z * column2.x);
|
|
inverse.column1.y = invDet * (column0.x * column2.z - column0.z * column2.x);
|
|
inverse.column1.z = invDet * -(column0.x * column1.z - column0.z * column1.x);
|
|
|
|
inverse.column2.x = invDet * (column1.x * column2.y - column1.y * column2.x);
|
|
inverse.column2.y = invDet * -(column0.x * column2.y - column0.y * column2.x);
|
|
inverse.column2.z = invDet * (column0.x * column1.y - column1.x * column0.y);
|
|
|
|
return inverse;
|
|
}
|
|
else
|
|
{
|
|
return PxMat33T(PxIdentity);
|
|
}
|
|
}
|
|
|
|
//! Get determinant
|
|
PX_CUDA_CALLABLE PX_INLINE Type getDeterminant() const
|
|
{
|
|
return column0.dot(column1.cross(column2));
|
|
}
|
|
|
|
//! Unary minus
|
|
PX_CUDA_CALLABLE PX_INLINE const PxMat33T operator-() const
|
|
{
|
|
return PxMat33T(-column0, -column1, -column2);
|
|
}
|
|
|
|
//! Add
|
|
PX_CUDA_CALLABLE PX_INLINE const PxMat33T operator+(const PxMat33T& other) const
|
|
{
|
|
return PxMat33T(column0 + other.column0, column1 + other.column1, column2 + other.column2);
|
|
}
|
|
|
|
//! Subtract
|
|
PX_CUDA_CALLABLE PX_INLINE const PxMat33T operator-(const PxMat33T& other) const
|
|
{
|
|
return PxMat33T(column0 - other.column0, column1 - other.column1, column2 - other.column2);
|
|
}
|
|
|
|
//! Scalar multiplication
|
|
PX_CUDA_CALLABLE PX_INLINE const PxMat33T operator*(Type scalar) const
|
|
{
|
|
return PxMat33T(column0 * scalar, column1 * scalar, column2 * scalar);
|
|
}
|
|
|
|
template<class Type2>
|
|
PX_CUDA_CALLABLE PX_INLINE friend PxMat33T<Type2> operator*(Type2, const PxMat33T<Type2>&);
|
|
|
|
//! Matrix vector multiplication (returns 'this->transform(vec)')
|
|
PX_CUDA_CALLABLE PX_INLINE const PxVec3T<Type> operator*(const PxVec3T<Type>& vec) const
|
|
{
|
|
return transform(vec);
|
|
}
|
|
|
|
// a <op>= b operators
|
|
|
|
//! Matrix multiplication
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE const PxMat33T operator*(const PxMat33T& other) const
|
|
{
|
|
// Rows from this <dot> columns from other
|
|
// column0 = transform(other.column0) etc
|
|
return PxMat33T(transform(other.column0),
|
|
transform(other.column1),
|
|
transform(other.column2));
|
|
}
|
|
|
|
//! Equals-add
|
|
PX_CUDA_CALLABLE PX_INLINE PxMat33T& operator+=(const PxMat33T& other)
|
|
{
|
|
column0 += other.column0;
|
|
column1 += other.column1;
|
|
column2 += other.column2;
|
|
return *this;
|
|
}
|
|
|
|
//! Equals-sub
|
|
PX_CUDA_CALLABLE PX_INLINE PxMat33T& operator-=(const PxMat33T& other)
|
|
{
|
|
column0 -= other.column0;
|
|
column1 -= other.column1;
|
|
column2 -= other.column2;
|
|
return *this;
|
|
}
|
|
|
|
//! Equals scalar multiplication
|
|
PX_CUDA_CALLABLE PX_INLINE PxMat33T& operator*=(Type scalar)
|
|
{
|
|
column0 *= scalar;
|
|
column1 *= scalar;
|
|
column2 *= scalar;
|
|
return *this;
|
|
}
|
|
|
|
//! Equals matrix multiplication
|
|
PX_CUDA_CALLABLE PX_INLINE PxMat33T& operator*=(const PxMat33T& other)
|
|
{
|
|
*this = *this * other;
|
|
return *this;
|
|
}
|
|
|
|
//! Element access, mathematical way!
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE Type operator()(PxU32 row, PxU32 col) const
|
|
{
|
|
return (*this)[col][row];
|
|
}
|
|
|
|
//! Element access, mathematical way!
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE Type& operator()(PxU32 row, PxU32 col)
|
|
{
|
|
return (*this)[col][row];
|
|
}
|
|
|
|
// Transform etc
|
|
|
|
//! Transform vector by matrix, equal to v' = M*v
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE const PxVec3T<Type> transform(const PxVec3T<Type>& other) const
|
|
{
|
|
return column0 * other.x + column1 * other.y + column2 * other.z;
|
|
}
|
|
|
|
//! Transform vector by matrix transpose, v' = M^t*v
|
|
PX_CUDA_CALLABLE PX_INLINE const PxVec3T<Type> transformTranspose(const PxVec3T<Type>& other) const
|
|
{
|
|
return PxVec3T<Type>(column0.dot(other), column1.dot(other), column2.dot(other));
|
|
}
|
|
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE const Type* front() const
|
|
{
|
|
return &column0.x;
|
|
}
|
|
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3T<Type>& operator[](PxU32 num)
|
|
{
|
|
return (&column0)[num];
|
|
}
|
|
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE const PxVec3T<Type>& operator[](PxU32 num) const
|
|
{
|
|
return (&column0)[num];
|
|
}
|
|
|
|
// Data, see above for format!
|
|
|
|
PxVec3T<Type> column0, column1, column2; // the three base vectors
|
|
};
|
|
|
|
template<class Type>
|
|
PX_CUDA_CALLABLE PX_INLINE PxMat33T<Type> operator*(Type scalar, const PxMat33T<Type>& m)
|
|
{
|
|
return PxMat33T<Type>(scalar * m.column0, scalar * m.column1, scalar * m.column2);
|
|
}
|
|
|
|
// implementation from PxQuat.h
|
|
template<class Type>
|
|
PX_CUDA_CALLABLE PX_INLINE PxQuatT<Type>::PxQuatT(const PxMat33T<Type>& m)
|
|
{
|
|
if(m.column2.z < Type(0))
|
|
{
|
|
if(m.column0.x > m.column1.y)
|
|
{
|
|
const Type t = Type(1.0) + m.column0.x - m.column1.y - m.column2.z;
|
|
*this = PxQuatT<Type>(t, m.column0.y + m.column1.x, m.column2.x + m.column0.z, m.column1.z - m.column2.y) * (Type(0.5) / PxSqrt(t));
|
|
}
|
|
else
|
|
{
|
|
const Type t = Type(1.0) - m.column0.x + m.column1.y - m.column2.z;
|
|
*this = PxQuatT<Type>(m.column0.y + m.column1.x, t, m.column1.z + m.column2.y, m.column2.x - m.column0.z) * (Type(0.5) / PxSqrt(t));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if(m.column0.x < -m.column1.y)
|
|
{
|
|
const Type t = Type(1.0) - m.column0.x - m.column1.y + m.column2.z;
|
|
*this = PxQuatT<Type>(m.column2.x + m.column0.z, m.column1.z + m.column2.y, t, m.column0.y - m.column1.x) * (Type(0.5) / PxSqrt(t));
|
|
}
|
|
else
|
|
{
|
|
const Type t = Type(1.0) + m.column0.x + m.column1.y + m.column2.z;
|
|
*this = PxQuatT<Type>(m.column1.z - m.column2.y, m.column2.x - m.column0.z, m.column0.y - m.column1.x, t) * (Type(0.5) / PxSqrt(t));
|
|
}
|
|
}
|
|
}
|
|
|
|
typedef PxMat33T<float> PxMat33;
|
|
typedef PxMat33T<double> PxMat33d;
|
|
|
|
/**
|
|
\brief Sets a rotation matrix around the X axis.
|
|
\param m [out] output rotation matrix
|
|
\param angle [in] desired angle
|
|
*/
|
|
PX_INLINE void PxSetRotX(PxMat33& m, PxReal angle)
|
|
{
|
|
m = PxMat33(PxIdentity);
|
|
|
|
PxReal sin, cos;
|
|
PxSinCos(angle, sin, cos);
|
|
|
|
m[1][1] = m[2][2] = cos;
|
|
m[1][2] = sin;
|
|
m[2][1] = -sin;
|
|
}
|
|
|
|
/**
|
|
\brief Sets a rotation matrix around the Y axis.
|
|
\param m [out] output rotation matrix
|
|
\param angle [in] desired angle
|
|
*/
|
|
PX_INLINE void PxSetRotY(PxMat33& m, PxReal angle)
|
|
{
|
|
m = PxMat33(PxIdentity);
|
|
|
|
PxReal sin, cos;
|
|
PxSinCos(angle, sin, cos);
|
|
|
|
m[0][0] = m[2][2] = cos;
|
|
m[0][2] = -sin;
|
|
m[2][0] = sin;
|
|
}
|
|
|
|
/**
|
|
\brief Sets a rotation matrix around the Z axis.
|
|
\param m [out] output rotation matrix
|
|
\param angle [in] desired angle
|
|
*/
|
|
PX_INLINE void PxSetRotZ(PxMat33& m, PxReal angle)
|
|
{
|
|
m = PxMat33(PxIdentity);
|
|
|
|
PxReal sin, cos;
|
|
PxSinCos(angle, sin, cos);
|
|
|
|
m[0][0] = m[1][1] = cos;
|
|
m[0][1] = sin;
|
|
m[1][0] = -sin;
|
|
}
|
|
|
|
/**
|
|
\brief Returns a rotation quaternion around the X axis.
|
|
\param angle [in] desired angle
|
|
\return Quaternion that rotates around the desired axis
|
|
*/
|
|
PX_INLINE PxQuat PxGetRotXQuat(float angle)
|
|
{
|
|
PxMat33 m;
|
|
PxSetRotX(m, angle);
|
|
return PxQuat(m);
|
|
}
|
|
|
|
/**
|
|
\brief Returns a rotation quaternion around the Y axis.
|
|
\param angle [in] desired angle
|
|
\return Quaternion that rotates around the desired axis
|
|
*/
|
|
PX_INLINE PxQuat PxGetRotYQuat(float angle)
|
|
{
|
|
PxMat33 m;
|
|
PxSetRotY(m, angle);
|
|
return PxQuat(m);
|
|
}
|
|
|
|
/**
|
|
\brief Returns a rotation quaternion around the Z axis.
|
|
\param angle [in] desired angle
|
|
\return Quaternion that rotates around the desired axis
|
|
*/
|
|
PX_INLINE PxQuat PxGetRotZQuat(float angle)
|
|
{
|
|
PxMat33 m;
|
|
PxSetRotZ(m, angle);
|
|
return PxQuat(m);
|
|
}
|
|
|
|
#if !PX_DOXYGEN
|
|
} // namespace physx
|
|
#endif
|
|
|
|
/** @} */
|
|
#endif
|
|
|