369 lines
8.5 KiB
C++
369 lines
8.5 KiB
C++
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions
|
|
// are met:
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the distribution.
|
|
// * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY
|
|
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Copyright (c) 2008-2023 NVIDIA Corporation. All rights reserved.
|
|
// Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved.
|
|
// Copyright (c) 2001-2004 NovodeX AG. All rights reserved.
|
|
|
|
#ifndef PX_VEC4_H
|
|
#define PX_VEC4_H
|
|
|
|
/** \addtogroup foundation
|
|
@{
|
|
*/
|
|
#include "foundation/PxMath.h"
|
|
#include "foundation/PxVec3.h"
|
|
|
|
/**
|
|
\brief 4 Element vector class.
|
|
|
|
This is a 4-dimensional vector class with public data members.
|
|
*/
|
|
#if !PX_DOXYGEN
|
|
namespace physx
|
|
{
|
|
#endif
|
|
|
|
template<class Type>
|
|
class PxVec4T
|
|
{
|
|
public:
|
|
/**
|
|
\brief default constructor leaves data uninitialized.
|
|
*/
|
|
PX_CUDA_CALLABLE PX_INLINE PxVec4T()
|
|
{
|
|
}
|
|
|
|
/**
|
|
\brief zero constructor.
|
|
*/
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec4T(PxZERO) : x(Type(0.0)), y(Type(0.0)), z(Type(0.0)), w(Type(0.0))
|
|
{
|
|
}
|
|
|
|
/**
|
|
\brief Assigns scalar parameter to all elements.
|
|
|
|
Useful to initialize to zero or one.
|
|
|
|
\param[in] a Value to assign to elements.
|
|
*/
|
|
explicit PX_CUDA_CALLABLE PX_INLINE PxVec4T(Type a) : x(a), y(a), z(a), w(a)
|
|
{
|
|
}
|
|
|
|
/**
|
|
\brief Initializes from 3 scalar parameters.
|
|
|
|
\param[in] nx Value to initialize X component.
|
|
\param[in] ny Value to initialize Y component.
|
|
\param[in] nz Value to initialize Z component.
|
|
\param[in] nw Value to initialize W component.
|
|
*/
|
|
PX_CUDA_CALLABLE PX_INLINE PxVec4T(Type nx, Type ny, Type nz, Type nw) : x(nx), y(ny), z(nz), w(nw)
|
|
{
|
|
}
|
|
|
|
/**
|
|
\brief Initializes from 3 scalar parameters.
|
|
|
|
\param[in] v Value to initialize the X, Y, and Z components.
|
|
\param[in] nw Value to initialize W component.
|
|
*/
|
|
PX_CUDA_CALLABLE PX_INLINE PxVec4T(const PxVec3T<Type>& v, Type nw) : x(v.x), y(v.y), z(v.z), w(nw)
|
|
{
|
|
}
|
|
|
|
/**
|
|
\brief Initializes from an array of scalar parameters.
|
|
|
|
\param[in] v Value to initialize with.
|
|
*/
|
|
explicit PX_CUDA_CALLABLE PX_INLINE PxVec4T(const Type v[]) : x(v[0]), y(v[1]), z(v[2]), w(v[3])
|
|
{
|
|
}
|
|
|
|
/**
|
|
\brief Copy ctor.
|
|
*/
|
|
PX_CUDA_CALLABLE PX_INLINE PxVec4T(const PxVec4T& v) : x(v.x), y(v.y), z(v.z), w(v.w)
|
|
{
|
|
}
|
|
|
|
// Operators
|
|
|
|
/**
|
|
\brief Assignment operator
|
|
*/
|
|
PX_CUDA_CALLABLE PX_INLINE PxVec4T& operator=(const PxVec4T& p)
|
|
{
|
|
x = p.x;
|
|
y = p.y;
|
|
z = p.z;
|
|
w = p.w;
|
|
return *this;
|
|
}
|
|
|
|
/**
|
|
\brief element access
|
|
*/
|
|
PX_CUDA_CALLABLE PX_INLINE Type& operator[](unsigned int index)
|
|
{
|
|
PX_ASSERT(index <= 3);
|
|
return reinterpret_cast<Type*>(this)[index];
|
|
}
|
|
|
|
/**
|
|
\brief element access
|
|
*/
|
|
PX_CUDA_CALLABLE PX_INLINE const Type& operator[](unsigned int index) const
|
|
{
|
|
PX_ASSERT(index <= 3);
|
|
return reinterpret_cast<const Type*>(this)[index];
|
|
}
|
|
|
|
/**
|
|
\brief returns true if the two vectors are exactly equal.
|
|
*/
|
|
PX_CUDA_CALLABLE PX_INLINE bool operator==(const PxVec4T& v) const
|
|
{
|
|
return x == v.x && y == v.y && z == v.z && w == v.w;
|
|
}
|
|
|
|
/**
|
|
\brief returns true if the two vectors are not exactly equal.
|
|
*/
|
|
PX_CUDA_CALLABLE PX_INLINE bool operator!=(const PxVec4T& v) const
|
|
{
|
|
return x != v.x || y != v.y || z != v.z || w != v.w;
|
|
}
|
|
|
|
/**
|
|
\brief tests for exact zero vector
|
|
*/
|
|
PX_CUDA_CALLABLE PX_INLINE bool isZero() const
|
|
{
|
|
return x == Type(0) && y == Type(0) && z == Type(0) && w == Type(0);
|
|
}
|
|
|
|
/**
|
|
\brief returns true if all 3 elems of the vector are finite (not NAN or INF, etc.)
|
|
*/
|
|
PX_CUDA_CALLABLE PX_INLINE bool isFinite() const
|
|
{
|
|
return PxIsFinite(x) && PxIsFinite(y) && PxIsFinite(z) && PxIsFinite(w);
|
|
}
|
|
|
|
/**
|
|
\brief is normalized - used by API parameter validation
|
|
*/
|
|
PX_CUDA_CALLABLE PX_INLINE bool isNormalized() const
|
|
{
|
|
const Type unitTolerance = Type(1e-4);
|
|
return isFinite() && PxAbs(magnitude() - Type(1.0)) < unitTolerance;
|
|
}
|
|
|
|
/**
|
|
\brief returns the squared magnitude
|
|
|
|
Avoids calling PxSqrt()!
|
|
*/
|
|
PX_CUDA_CALLABLE PX_INLINE Type magnitudeSquared() const
|
|
{
|
|
return x * x + y * y + z * z + w * w;
|
|
}
|
|
|
|
/**
|
|
\brief returns the magnitude
|
|
*/
|
|
PX_CUDA_CALLABLE PX_INLINE Type magnitude() const
|
|
{
|
|
return PxSqrt(magnitudeSquared());
|
|
}
|
|
|
|
/**
|
|
\brief negation
|
|
*/
|
|
PX_CUDA_CALLABLE PX_INLINE PxVec4T operator-() const
|
|
{
|
|
return PxVec4T(-x, -y, -z, -w);
|
|
}
|
|
|
|
/**
|
|
\brief vector addition
|
|
*/
|
|
PX_CUDA_CALLABLE PX_INLINE PxVec4T operator+(const PxVec4T& v) const
|
|
{
|
|
return PxVec4T(x + v.x, y + v.y, z + v.z, w + v.w);
|
|
}
|
|
|
|
/**
|
|
\brief vector difference
|
|
*/
|
|
PX_CUDA_CALLABLE PX_INLINE PxVec4T operator-(const PxVec4T& v) const
|
|
{
|
|
return PxVec4T(x - v.x, y - v.y, z - v.z, w - v.w);
|
|
}
|
|
|
|
/**
|
|
\brief scalar post-multiplication
|
|
*/
|
|
PX_CUDA_CALLABLE PX_INLINE PxVec4T operator*(Type f) const
|
|
{
|
|
return PxVec4T(x * f, y * f, z * f, w * f);
|
|
}
|
|
|
|
/**
|
|
\brief scalar division
|
|
*/
|
|
PX_CUDA_CALLABLE PX_INLINE PxVec4T operator/(Type f) const
|
|
{
|
|
f = Type(1.0) / f;
|
|
return PxVec4T(x * f, y * f, z * f, w * f);
|
|
}
|
|
|
|
/**
|
|
\brief vector addition
|
|
*/
|
|
PX_CUDA_CALLABLE PX_INLINE PxVec4T& operator+=(const PxVec4T& v)
|
|
{
|
|
x += v.x;
|
|
y += v.y;
|
|
z += v.z;
|
|
w += v.w;
|
|
return *this;
|
|
}
|
|
|
|
/**
|
|
\brief vector difference
|
|
*/
|
|
PX_CUDA_CALLABLE PX_INLINE PxVec4T& operator-=(const PxVec4T& v)
|
|
{
|
|
x -= v.x;
|
|
y -= v.y;
|
|
z -= v.z;
|
|
w -= v.w;
|
|
return *this;
|
|
}
|
|
|
|
/**
|
|
\brief scalar multiplication
|
|
*/
|
|
PX_CUDA_CALLABLE PX_INLINE PxVec4T& operator*=(Type f)
|
|
{
|
|
x *= f;
|
|
y *= f;
|
|
z *= f;
|
|
w *= f;
|
|
return *this;
|
|
}
|
|
/**
|
|
\brief scalar division
|
|
*/
|
|
PX_CUDA_CALLABLE PX_INLINE PxVec4T& operator/=(Type f)
|
|
{
|
|
f = Type(1.0) / f;
|
|
x *= f;
|
|
y *= f;
|
|
z *= f;
|
|
w *= f;
|
|
return *this;
|
|
}
|
|
|
|
/**
|
|
\brief returns the scalar product of this and other.
|
|
*/
|
|
PX_CUDA_CALLABLE PX_INLINE Type dot(const PxVec4T& v) const
|
|
{
|
|
return x * v.x + y * v.y + z * v.z + w * v.w;
|
|
}
|
|
|
|
/** returns a unit vector */
|
|
PX_CUDA_CALLABLE PX_INLINE PxVec4T getNormalized() const
|
|
{
|
|
const Type m = magnitudeSquared();
|
|
return m > Type(0.0) ? *this * PxRecipSqrt(m) : PxVec4T(Type(0));
|
|
}
|
|
|
|
/**
|
|
\brief normalizes the vector in place
|
|
*/
|
|
PX_CUDA_CALLABLE PX_INLINE Type normalize()
|
|
{
|
|
const Type m = magnitude();
|
|
if(m > Type(0.0))
|
|
*this /= m;
|
|
return m;
|
|
}
|
|
|
|
/**
|
|
\brief a[i] * b[i], for all i.
|
|
*/
|
|
PX_CUDA_CALLABLE PX_INLINE PxVec4T multiply(const PxVec4T& a) const
|
|
{
|
|
return PxVec4T(x * a.x, y * a.y, z * a.z, w * a.w);
|
|
}
|
|
|
|
/**
|
|
\brief element-wise minimum
|
|
*/
|
|
PX_CUDA_CALLABLE PX_INLINE PxVec4T minimum(const PxVec4T& v) const
|
|
{
|
|
return PxVec4(PxMin(x, v.x), PxMin(y, v.y), PxMin(z, v.z), PxMin(w, v.w));
|
|
}
|
|
|
|
/**
|
|
\brief element-wise maximum
|
|
*/
|
|
PX_CUDA_CALLABLE PX_INLINE PxVec4T maximum(const PxVec4T& v) const
|
|
{
|
|
return PxVec4T(PxMax(x, v.x), PxMax(y, v.y), PxMax(z, v.z), PxMax(w, v.w));
|
|
}
|
|
|
|
PX_CUDA_CALLABLE PX_INLINE PxVec3T<Type> getXYZ() const
|
|
{
|
|
return PxVec3T<Type>(x, y, z);
|
|
}
|
|
|
|
Type x, y, z, w;
|
|
};
|
|
|
|
template<class Type>
|
|
PX_CUDA_CALLABLE static PX_INLINE PxVec4T<Type> operator*(Type f, const PxVec4T<Type>& v)
|
|
{
|
|
return PxVec4T<Type>(f * v.x, f * v.y, f * v.z, f * v.w);
|
|
}
|
|
|
|
typedef PxVec4T<float> PxVec4;
|
|
typedef PxVec4T<double> PxVec4d;
|
|
|
|
#if !PX_DOXYGEN
|
|
} // namespace physx
|
|
#endif
|
|
|
|
/** @} */
|
|
#endif
|
|
|