physxCAPI/physxCDLL/include/PxAnisotropy.h
2023-08-11 10:55:58 +08:00

223 lines
8.2 KiB
C++

// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Copyright (c) 2008-2023 NVIDIA Corporation. All rights reserved.
// Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved.
// Copyright (c) 2001-2004 NovodeX AG. All rights reserved.
#ifndef PX_ANISOTROPY_H
#define PX_ANISOTROPY_H
/** \addtogroup extensions
@{
*/
#include "cudamanager/PxCudaContext.h"
#include "cudamanager/PxCudaContextManager.h"
#include "foundation/PxSimpleTypes.h"
#include "foundation/PxVec4.h"
#include "PxParticleSystem.h"
#include "foundation/PxArray.h"
#include "PxParticleGpu.h"
#if !PX_DOXYGEN
namespace physx
{
#endif
#if PX_SUPPORT_GPU_PHYSX
class PxgKernelLauncher;
class PxParticleNeighborhoodProvider;
/**
\brief Computes anisotropy information for a particle system to improve rendering quality
*/
class PxAnisotropyGenerator
{
public:
/**
\brief Schedules the compuation of anisotropy information on the specified cuda stream
\param[in] gpuParticleSystem A gpu pointer to access particle system data
\param[in] numParticles The number of particles
\param[in] stream The stream on which the cuda call gets scheduled
*/
virtual void generateAnisotropy(PxGpuParticleSystem* gpuParticleSystem, PxU32 numParticles, CUstream stream) = 0;
/**
\brief Schedules the compuation of anisotropy information on the specified cuda stream
\param[in] particlePositionsGpu A gpu pointer containing the particle positions
\param[in] neighborhoodProvider A neighborhood provider object that supports fast neighborhood queries
\param[in] numParticles The number of particles
\param[in] particleContactOffset The particle contact offset
\param[in] stream The stream on which the cuda call gets scheduled
*/
virtual void generateAnisotropy(PxVec4* particlePositionsGpu, PxParticleNeighborhoodProvider& neighborhoodProvider, PxU32 numParticles, PxReal particleContactOffset, CUstream stream) = 0;
/**
\brief Set a host buffer that holds the anisotropy data after the timestep completed
\param[in] anisotropy1 A host buffer holding the first row of the anisotropy matrix with memory for all particles already allocated
\param[in] anisotropy2 A host buffer holding the second row of the anisotropy matrix with memory for all particles already allocated
\param[in] anisotropy3 A host buffer holding the third row of the anisotropy matrix with memory for all particles already allocated
*/
virtual void setResultBufferHost(PxVec4* anisotropy1, PxVec4* anisotropy2, PxVec4* anisotropy3) = 0;
/**
\brief Set a device buffer that holds the anisotrpy data after the timestep completed
\param[in] anisotropy1 A device buffer holding the first row of the anisotropy matrix with memory for all particles already allocated
\param[in] anisotropy2 A device buffer holding the second row of the anisotropy matrix with memory for all particles already allocated
\param[in] anisotropy3 A device buffer holding the third row of the anisotropy matrix with memory for all particles already allocated
*/
virtual void setResultBufferDevice(PxVec4* anisotropy1, PxVec4* anisotropy2, PxVec4* anisotropy3) = 0;
/**
\brief Sets the maximum value anisotropy can reach in any direction
\param[in] maxAnisotropy The maximum anisotropy value
*/
virtual void setAnisotropyMax(float maxAnisotropy) = 0;
/**
\brief Sets the minimum value anisotropy can reach in any direction
\param[in] minAnisotropy The minimum anisotropy value
*/
virtual void setAnisotropyMin(float minAnisotropy) = 0;
/**
\brief Sets the anisotropy scale
\param[in] anisotropyScale The anisotropy scale
*/
virtual void setAnisotropyScale(float anisotropyScale) = 0;
/**
\brief Gets the maximal number of particles
\return The maximal number of particles
*/
virtual PxU32 getMaxParticles() const = 0;
/**
\brief Sets the maximal number of particles
\param[in] maxParticles The maximal number of particles
*/
virtual void setMaxParticles(PxU32 maxParticles) = 0;
/**
\brief Gets the device pointer for the anisotropy in x direction. Only available after calling setResultBufferHost or setResultBufferDevice
\return The device pointer for the anisotropy x direction and scale (w component contains the scale)
*/
virtual PxVec4* getAnisotropy1DevicePointer() const = 0;
/**
\brief Gets the device pointer for the anisotropy in y direction. Only available after calling setResultBufferHost or setResultBufferDevice
\return The device pointer for the anisotropy y direction and scale (w component contains the scale)
*/
virtual PxVec4* getAnisotropy2DevicePointer() const = 0;
/**
\brief Gets the device pointer for the anisotropy in z direction. Only available after calling setResultBufferHost or setResultBufferDevice
\return The device pointer for the anisotropy z direction and scale (w component contains the scale)
*/
virtual PxVec4* getAnisotropy3DevicePointer() const = 0;
/**
\brief Enables or disables the anisotropy generator
\param[in] enabled The boolean to set the generator to enabled or disabled
*/
virtual void setEnabled(bool enabled) = 0;
/**
\brief Allows to query if the anisotropy generator is enabled
\return True if enabled, false otherwise
*/
virtual bool isEnabled() const = 0;
/**
\brief Releases the instance and its data
*/
virtual void release() = 0;
/**
\brief Destructor
*/
virtual ~PxAnisotropyGenerator() {}
};
/**
\brief Default implementation of a particle system callback to trigger anisotropy calculations. A call to fetchResultsParticleSystem() on the
PxScene will synchronize the work such that the caller knows that the post solve task completed.
*/
class PxAnisotropyCallback : public PxParticleSystemCallback
{
public:
/**
\brief Initializes the anisotropy callback
\param[in] anistropyGenerator The anisotropy generator
*/
void initialize(PxAnisotropyGenerator* anistropyGenerator)
{
mAnistropyGenerator = anistropyGenerator;
}
virtual void onPostSolve(const PxGpuMirroredPointer<PxGpuParticleSystem>& gpuParticleSystem, CUstream stream)
{
if (mAnistropyGenerator)
{
mAnistropyGenerator->generateAnisotropy(gpuParticleSystem.mDevicePtr, gpuParticleSystem.mHostPtr->mCommonData.mMaxParticles, stream);
}
}
virtual void onBegin(const PxGpuMirroredPointer<PxGpuParticleSystem>& /*gpuParticleSystem*/, CUstream /*stream*/) { }
virtual void onAdvance(const PxGpuMirroredPointer<PxGpuParticleSystem>& /*gpuParticleSystem*/, CUstream /*stream*/) { }
private:
PxAnisotropyGenerator* mAnistropyGenerator;
};
#endif
#if !PX_DOXYGEN
} // namespace physx
#endif
/** @} */
#endif